1.Protective effect of quercetin mediated ferroptosis pathway on hypertonic stimulation induced dry eye cell model
Jia-Di WANG ; Bai-Ping AN ; Yue LIU ; Cong-Hong CAO ; Bei-Ting ZONG ; Jing YAO
The Chinese Journal of Clinical Pharmacology 2024;40(4):529-533
Objective To investigate the effect of quercetin on HCE-2 injury of human corneal epithelial cells induced by high osmotic pressure and its mechanism.Methods HCE-2 cells were randomly divided into control group(normal osmotic pressure),model group(high osmotic pressure),experimental-L group(high osmotic pressure+31.25 pg·mL-1 quercetin),experimental-M group(high osmotic pressure+62.50 μg·mL-1 quercetin),experimental-H group(high osmotic pressure+125.00 μg·mL-1 quercetin),erastin group(high osmotic pressure+125.00 μg·mL-1 quercetin+30.00 μmol·L-1 iron death inducer erastin).Cell survival rate was detected by cell counting kit 8;reactive oxygen species(ROS)levels was detected by C11-BODIPY 581/591 probe staining;glutathione(GSH)and malondialdehyde(MDA)levels were determined by kit method;the expression levels of glutathione peroxidase 4(GPX4),dihydrolactate dehydrogenase(DHODH)and ferroptosis suppressor protein 1(FSP1)were detected by real-time quantitative polymerase chain reaction and Western blot.Results The cell survival rates of control group,model group,experimental-H group and erastin group were(100.00±3.97)%,(50.05±5.83)%,(86.35±7.35)%and(58.32±4.66)%,respectively;ROS levels were 1.00±0.09,2.45±0.16,1.19±0.05 and 2.09±0.30,respectively;GPX4 protein levels were 1.09±0.11,0.34±0.03,0.91±0.12 and 0.30±0.04,respectively;FSP1 protein levels were 0.92±0.06,0.25±0.03,0.89±0.07 and 0.39±0.07,respectively;DHODH protein levels were 0.89±0.11,0.31±0.04,0.86±0.11,0.41±0.04,respectively.Compared with model group,the above indexes in control group were statistically significant(all P<0.05);the differences between experimental-H group and model group were statistically significant(all P<0.05);the above indexes in erastin group were significantly different from those in experimental-H group(all P<0.05).Conclusion Quercetin can ameliorate HCE-2 cell damage induced by high osmotic pressure by inhibiting iron death pathway.
2.Biological scaffold materials and printing technology for repairing bone defects
Xiangyu KONG ; Xing WANG ; Zhiwei PEI ; Jiale CHANG ; Siqin LI ; Ting HAO ; Wanxiong HE ; Baoxin ZHANG ; Yanfei JIA
Chinese Journal of Tissue Engineering Research 2024;28(3):479-485
BACKGROUND:In recent years,with the development of biological scaffold materials and bioprinting technology,tissue-engineered bone has become a research hotspot in bone defect repair. OBJECTIVE:To summarize the current treatment methods for bone defects,summarize the biomaterials and bioprinting technology for preparing tissue-engineered bone scaffolds,and explore the application of biomaterials and printing technology in tissue engineering and the current challenges. METHODS:Search terms were"bone defect,tissue engineering,biomaterials,3D printing technology,4D printing technology,bioprinting,biological scaffold,bone repair"in Chinese and English.Relevant documents published from January 1,2009 to December 1,2022 were retrieved on CNKI,PubMed and Web of Science databases.After being screened by the first author,high-quality references were added.A total of 93 articles were included for review. RESULTS AND CONCLUSION:The main treatment methods for bone defects include bone transplantation,membrane-guided regeneration,gene therapy,bone tissue engineering,etc.The best treatment method is still uncertain.Bone tissue engineering technology is a new technology for the treatment of bone defects.It has become the focus of current research by constructing three-dimensional structures that can promote the proliferation and differentiation of osteoblasts and enhance the ability of bone formation.Biological scaffold materials are diverse,with their characteristics,advantages and disadvantages.A single biological material cannot meet the demand for tissue-engineered bone for the scaffold.Usually,multiple materials are combined to complement each other,which is to meet the demand for mechanical properties while taking into account the biological properties of the scaffold.Bioprinting technology can adjust the pore of the scaffold,build a complex spatial structure,and is more conducive to cell adhesion,proliferation and differentiation.The emerging 4D printing technology introduces"time"as the fourth dimension to make the prepared scaffold dynamic.With the synchronous development of smart materials,4D printing technology provides the possibility of efficient repair of bone defects in the future.
3.Effect of eccentric training combined with different frequency whole body vibration training on patellar tendinopathy
Zihao JIANG ; Guanglan WANG ; Peng CHEN ; Xianghong SUN ; Ting WANG ; Shaohui JIA ; Cheng ZHENG
Chinese Journal of Tissue Engineering Research 2024;28(4):493-498
BACKGROUND:A large number of studies have investigated the effects of whole body vibration training at different frequencies on muscle strength,but less is reported on the differences in the efficacy of vibration training at different frequencies on patellar tendinopathy. OBJECTIVE:To explore the effect of eccentric training of quadriceps combined with different frequency of whole body vibration training on patellar tendinopathy. METHODS:From April to June 2022,48 patients with patellar tendinopathy were recruited from Wuhan Sports University and randomly divided into eccentric training group(n=12),30 Hz group(n=12),40 Hz group(n=12),and 50 Hz group(n=12).The eccentric training group only completed eccentric training of the quadriceps.The 30 Hz,40 Hz and 50 Hz groups performed the whole body vibration training with the amplitude of 2 mm and frequencies of 30 Hz,40 Hz and 50 Hz respectively on the basis of the eccentric training of the quadriceps.The intervention lasted for 8 weeks,three times a week.Before and after the intervention,the patients'surface electromyography signals of the quadriceps,kinematics and dynamics data of knee joint at the time of landing in deep jump and the time of peak vertical ground reaction,Visual Analogue Scale score,Victorian Institute of Sports Assessment-Patellar score were evaluated. RESULTS AND CONCLUSION:After 8 weeks of intervention,compared with the eccentric training group,the median frequency of the lateral and medial femoris muscles were significantly higher in the 40 Hz and 50 Hz groups(P<0.05).At the time of landing,the knee joint flexion angle and external rotation moment in the 40 Hz and 50 Hz groups were significantly lower than those in the eccentric training group(P<0.05),while the knee joint flexion angle in the 50 Hz group was significantly lower than that in the 30 Hz group(P<0.05).At the peak moment of vertical ground reaction,the knee extension torque in the 40 Hz group was significantly lower than that in the eccectric training group(P<0.05);the knee flexion angle and knee extension torque in the 50 Hz group were significantly lower than those in the eccentric training group(P<0.05).The Visual Analogue Scale scores in the 50 Hz and 40 Hz groups were significantly lower than those in the eccentric training group(P<0.05).The Victorian Institute of Sports Assessment-Patellar score in the 50 Hz group was significantly higher than that in the eccentric training group and 30 Hz group(P<0.05).To conclude,eccentric training of the quadriceps combined with 50 Hz whole body vibration training can significantly improve quadriceps'strength,endurance and activation rate of the vastus lateralis muscle,reduce the pain of knee joint,and improve the function of the knee joint in patients with patellar tendinopathy.
4.Effect of peripheral defocus spectacle lenses and orthokeratology lenses on myopia progression control and vision-related quality of life in children
Haitao ZHOU ; Minglong ZUO ; Jia LANG ; Ting SHEN ; Xiaoyan LYU ; Junhui ZHANG ; Yuanyuan WANG
International Eye Science 2024;24(10):1629-1633
AIM:To explore the effect of the peripheral defocus spectacle lenses and orthokeratology(OK)on the control of myopia progression and the impact on vision related quality of life in children and adolescents.METHODS:Prospective study. A total of 237 children initially diagnosed with myopia in the ophthalmology department of Huzhou Central Hospital from January 2021 to January 2022 were selected and divided into two groups according to different correction methods: peripheral defocus spectacle lenses group(105 cases, 105 eyes)and OK lens group(132 cases, 132 eyes). The Vision Related Quality of Life Questionnaire for Primary and Secondary School Students was used to follow up the both groups of myopic children, and the best corrected visual acuity(BCVA), spherical equivalent(SE), and axial length(AL)were recorded at the first visit and 1 a of follow-up.RESULTS:After wearing lenses for 1 a, both the peripheral defocus spectacle lenses group and OK lens group showed an increase in SE and AL, but there was no statistical difference between two groups(P>0.05). The changes in SE and AL in the peripheral defocus spectacle lenses group were greater than those in the OK lens group(all P=0.001). After 1 a of follow-up, in the emotional dimension scores, the peripheral defocus spectacle lenses group of children's vision-related quality of life scales scored higher than in the OK lens group(P<0.05). Compared with the baseline value, the change in the emotional dimension scores of the OK lens group was greater than that in the peripheral defocus spectacle lens group(P<0.05).CONCLUSION:OK lenses are superior to peripheral defocus spectacle lenses in controlling the progression of myopia in children and adolescents. Both correction methods can significantly improve myopic children's vision-related quality of life, with OK lenses being better at improving the emotional dimension of vision-related quality of life.
5.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
6.Research on three-dimensional ordered porous carbon-based materials prepared from Acanthopanax senticosus traditional Chinese medicine residues and their drug loading performance
De-sheng WANG ; Jia-xin FAN ; Ri-qing CHENG ; Shi-kui WU ; Lai-bing WANG ; Jia-hao SHI ; Ting-ting CHEN ; Qin-fang HE ; Chang-jin XU ; Hui-qing GUO
Acta Pharmaceutica Sinica 2024;59(10):2857-2863
Three-dimensional ordered porous carbon materials exhibit potential application prospects as excellent drug supports in drug delivery systems due to their high specific surface area, tunable pore structure, and excellent biocompatibility. In this study, three-dimensional ordered porous carbon materials were prepared using
7.Identification and anti-inflammatory activity of chemical constituents and a pair of new monoterpenoid enantiomers from the fruits of Litsea cubeba
Mei-lin LU ; Wan-feng HUANG ; Yu-ming HE ; Bao-lin WANG ; Fu-hong YUAN ; Ting ZHANG ; Qi-ming PAN ; Xin-ya XU ; Jia HE ; Shan HAN ; Qin-qin WANG ; Shi-lin YANG ; Hong-wei GAO
Acta Pharmaceutica Sinica 2024;59(5):1348-1356
Eighteen compounds were isolated from the methanol extract of the fruits of
8.Loong oil-lyotropic liquid crystals for the treatment of combined radiation and burn injury
Wan-ting GUO ; Xue-li JIA ; Yan LIU ; Ya-dan HU ; Ke WANG ; Lei ZHANG ; Yong ZHANG ; Yi-guang JIN
Acta Pharmaceutica Sinica 2024;59(5):1449-1457
Combined radiation and burn injury (CRBI) is a severe syndrome, which is induced by the simultaneous or successive radiation and burn; but no appropriate clinical therapies are available. Loong oil (LO) is a traditional Chinese medicine oil composed of the oil extracts of cuttlebone, safflower, walnut oil, and rapeseed oil, which has been demonstrated to own anti-radiation and tissue healing functions. In this study, glyceryl monostearate (GMO) was used for the preparation of lyotropic liquid crystals that loaded LO to obtain Loong oil-lyotropic liquid crystals (LOL) for the treatment of skin CRBI. The hexagonal phase structure of LOL was proved by small X-ray scattering (SAXS) analysis with an approximate
9.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.
10.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.

Result Analysis
Print
Save
E-mail