1.Characteristics of imprinted differentially methylated regions in preeclampsia placenta
Huijun TANG ; Xiaojun JIA ; Xinzhi ZHAO ; Weiping YE
Chinese Journal of Clinical Medicine 2025;32(1):65-71
Objective To investigate the characteristics of imprinted differentially methylated regions (iDMRs) in placentas and their correlation with preeclampsia (PE). Methods A total of 43 healthy pregnant women (control group) and 33 pregnant women with PE (PE group) at Shanghai Putuo Maternity and Infant Hospital and International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine from September 2021 to September 2023 were selected. A total of 3 362 CpG sites in 62 iDMRs were analyzed in 76 placenta and 5 maternal blood samples using BisCap targeted bisulfite resequencing (BisCap-seq) assays. The CpG sites in the CpG islands of the iDMRs were assessed for their methylation levels and methylation linkage disequilibrium (MLD). Imprinted methylation haplotype blocks (iMHBs) were constructed based on MLD. The methylation levels and variablility of CpG sites and iMHBs were compared among the healthy placenta, PE placenta and blood samples. Results The CpG sites in the CpG islands of the iDMRs exhibited intermediate methylation, with adjacent sites displaying high MLD (methylation levels: 0.35-0.65, D’ > 0.8). A total of 185 iMHBs were constructed using these coupled CpG sites, 60 placenta-specific iMHBs and 38 somatic iMHBs were found to be differentially methylated in the placenta compared with maternal blood (Padj<0.05). Twenty-seven iMHBs were identified with differentially variable methylation patterns in the placenta. The iMHBs methylation was unchanged in the PE placentas compared to the healthy placentas. Twenty-seven differentially methylated cytosines (DMCs) were identified outside the iMHBs structure, among which the methylation levels of 19 CpG sites showed statistically significant differences between the PE group and the control group (Padj<0.05). The quantitative results of placental compositions of maternal plasma cell-free DNA (cfDNA) using placenta-specific haplotype (PSH) were highly correlated with those estimated by a deconvolution methodology (r=0.973, P<0.01). Conclusions The genomic imprinting features in the PE placentas were obvious, and PSH could be a potential marker of the placenta to quantify the placental compositions of maternal plasma cfDNA.
2.Analysis of pediatric pre-prescription review orders based on PCNE classification system
Anle SHEN ; Peiqi WANG ; Tao XU ; Jia LUO ; Xuexian WANG ; Shunguo ZHANG ; Zhiling LI
China Pharmacy 2025;36(3):351-355
OBJECTIVE To provide reference for improving the pre-prescription review system and reducing the occurrence of medication error by analyzing the drug-related problems (DRPs) in the pre-prescription review orders of pediatric outpatient clinics using the Pharmaceutical Care Network Europe (PCNE) classification system. METHODS The data of pre-prescription review orders were retrospectively collected from outpatient department of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine from July 2022 to June 2023; DRPs in the pre-prescription review orders were classified and summarized by using the PCNE classification system (version 9.1), and then analyzed in terms of types and causes of issues, and the acceptance of interventions. RESULTS A total of 66 017 DRPs orders were included, involving 41 165 patients. The proportion of DRPs orders in children aged ≤5 years old was the highest (58.25%), followed by children aged 6-12 years old (33.52%); the department with the highest proportion of DRPs was internal medicine of pediatrics department (71.41%); the department with the highest incidence of DRPs was thoracic surgery department (9.73%); top three drug categories of DRPs orders were systemic anti- infective drugs (25.26%), Chinese patent medicines (24.74%) and respiratory drugs (22.38%). Referring to PCNE classification system, the types of DRPs mainly focused on treatment safety (64.86%); the reasons of DRPs orders mainly focused on dose selection (82.09%), of which 41.26% were due to excessive drug dosage; 92.13% of interventions could be accepted and fully executed by doctors. CONCLUSIONS DRPs orders identified by the pre-prescription review system can be effectively analyzed by using PCNE classification system. Pharmacists should focus on medication use in children aged ≤5 years old, update and develop personalized prescription review rules timely, and meet the rational needs of clinical medication for children.
3.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
4.Detection status of thyroid nodules and its relationship with insulin resistance in elderly patients with type 2 diabetes mellitus
Jia XIE ; Siyang CHEN ; Tong SUN
Journal of Public Health and Preventive Medicine 2025;36(2):52-55
Objective To analyze the status of thyroid nodules in elderly patients with type 2 diabetes mellitus (T2DM) and its relationship with insulin resistance. Methods A total of 324 elderly patients with T2DM admitted to West China Hospital of Sichuan University from January 2018 to December 2023 were selected as the study subjects. The detection status of thyroid nodules was analyzed. According to the presence of thyroid nodules, the patients were classified into thyroid nodule group and non-thyroid nodule group. The insulin resistance index (HOMA-IR) of the study subjects was measured. Spearman correlation analysis was applied to analyze the correlation between concurrent thyroid nodules and HOMA-IR. ROC curve was drawn to analyze the value of HOMA-IR in assessing the risk of thyroid nodules in elderly patients with T2DM. Results Among the 324 elderly T2DM patients, 211 cases of thyroid nodules were detected, with a detection rate of 65.12%. The detection ratio of thyroid nodules in males and females was 1:1.24. The thyroid nodule detection rate was different among patients with different levels of insulin resistance, and the detection rate of thyroid nodules in patients with HOMA-IR>2.0 was higher than that in patients with HOMA-IR≤2.0 (P<0.05). Correlation analysis indicated that HOMA-IR was positively correlated with thyroid nodule in elderly T2DM patients (r=0.650, P<0.05). ROC curve revealed that the area under the curve (AUC), sensitivity, and specificity of HOMA-IR in evaluating thyroid nodules were 0.911, 81.99%, and 96.46%, respectively. Conclusion The risk of thyroid nodules is high in elderly patients with T2DM, and the detection rate in women is higher than that in men, which is closely related to insulin resistance level. HOMA-IR values can provide a reference for the early evaluation of thyroid nodules in elderly T2DM patients.
5.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
6.Effect and mechanism of BYL-719 on Mycobacterium tuberculosis-induced differentiation of abnormal osteoclasts
Jun ZHANG ; Jian GUO ; Qiyu JIA ; Lili TANG ; Xi WANG ; Abudusalamu·Alimujiang ; Tong WU ; Maihemuti·Yakufu ; Chuang MA
Chinese Journal of Tissue Engineering Research 2025;29(2):355-362
BACKGROUND:The phosphatidylinositol 3-kinase/protein kinase(PI3K/AKT)signaling pathway plays a pivotal role in regulating osteoclast activation,which is essential for maintaining bone homeostasis.Bone destruction in osteoarticular tuberculosis is caused by aberrant osteoclastogenesis induced by Mycobacterium tuberculosis infection.However,the role of the PI3K signaling pathway in Mycobacterium tuberculosis-induced aberrant osteoclastogenesis remains unclear. OBJECTIVE:To investigate the effects and mechanisms of the PI3K/AKT signaling pathway inhibitor BYL-719 on aberrant osteoclastogenesis induced by Mycobacterium tuberculosis. METHODS:RAW264.7 cells were infected with bovine Mycobacterium tuberculosis bacillus calmette-cuerin vaccine,and Ag85B was used for cellular immunofluorescence staining.The cell counting kit-8 assay was employed to determine the safe concentration of BYL-719.There were four groups in the experiment:blank control group,BYL-719 group,BCG group,and BCG+BYL-719 group.Under the induction of receptor activator of nuclear factor kappa-B ligand,the effects of BYL-719 on post-infection osteoclast differentiation and fusion were explored through tartrate-resistant acid phosphatase staining and phalloidin staining.RT-PCR and western blot were used to detect the expression of osteoclast-related genes and proteins,and further investigate the mechanism of action. RESULTS AND CONCLUSION:Immunofluorescence staining showed that RAW264.7 cells phagocytosed Mycobacterium tuberculosis.Cell counting kit-8 data indicated that 40 nmol/L BYL-719 was non-toxic to cells.Tartrate-resistant acid phosphatase staining and phalloidin staining showed that BYL-719 inhibited the generation and fusion ability of osteoclasts following infection.RT-PCR and western blot results also indicated that BYL-719 suppressed the upregulation of osteoclast-specific genes(including c-Fos,NFATc1,matrix metalloproteinase 9,and CtsK)induced by Mycobacterium tuberculosis infection(P<0.05).Western blot and immunofluorescence staining revealed that BYL-719 inhibited excessive osteoclast differentiation induced by Mycobacterium tuberculosis by downregulating the expression of IκBα-p65.To conclude,BYL-719 inhibits aberrant osteoclastogenesis induced by Mycobacterium tuberculosis through the downregulation of IκBα/p65.Therefore,the IκBα/p65 signaling pathway is a potential therapeutic target for osteoarticular tuberculosis,and BYL-719 holds potential value for the preventing and amelioration of bone destruction in osteoarticular tuberculosis.BYL-719 has the potential to prevent and ameliorate bone destruction in osteoarticular tuberculosis.
7.Pharmacological effect and mechanism of tannic acids in Paeoniae Radix Alba.
Jia-Xin DIAO ; Qi-Tong ZHENG ; Meng-Yao CHEN ; Jiang-Chuan HONG ; Min HAO ; Qing-Mei FENG ; Jun-Qi HU ; Xia-Nan SANG ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(6):1471-1483
The chemical composition of Paeoniae Radix Alba(PRA) is complex, with primary secondary metabolites including monoterpenoids, tannins, triterpenoids, and flavonoids. In previous studies on the material basis of PRA, it was found that, in addition to the widely studied characteristic monoterpene glycosides, tannic acid components also play an important role in the efficacy of PRA. However, their pharmacological effects have not been thoroughly investigated. This paper reviews the tannic acid components in PRA, including pentagaloyl glucose(PGG), tetragaloyl glucose(TGG), trigaloyl glucose(TriGG), and gallic acid, along with their structures, properties, and characteristics to provide a detailed discussion of their pharmacological activities and related mechanisms, aiming to offer a theoretical basis for the material basis research and clinical application of PRA.
Paeonia/chemistry*
;
Tannins/chemistry*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Plant Extracts
8.Advance on clinical and pharmacological research of Bawei Chenxiang Powder and related formulae.
Lu-Lu KANG ; Jia-Tong WANG ; Feng ZHOU ; Guo-Dong YANG ; Xiao-Juan LI ; Xiao-Li GAO ; Luobu GESANG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(10):2875-2882
Bawei Chenxiang Powder(BCP), first documented in the Tibetan medical work Four Medical Classics, has been widely applied in clinical practices in Tibetan and Mongolian medicines since its development. It has the effect of clearing the heart heat, calming the mind, and inducing resuscitation. On the basis of BCP, multiple types of formulae have been developed, such as Bawei Yiheyi Chenxiang Powder, Bawei Rang Chenxiang Powder, and Bawei Pingchuan Chenxiang Powder, which are widely used for treating cardiovascular and respiratory diseases. Current pharmacological research has revealed the pharmacological effects of BCP and its related formulae against myocardial ischemia, cerebral ischemia, renal ischemia, and anti-hypoxia. BCP and its related formulae introduced more treatment options for related clinical diseases and provided insights for fully comprehending the essence and pharmacological components of the formulae. This paper systematically reviewed the clinical and pharmacological research on BCP and its related formulae, analyzing the formulation principles and potential key flavors and active ingredients. This lays a fundamental scientific basis for the clinical use, quality evaluation, and subsequent development and application of BCP and its related formulae, providing references for studying traditional Chinese medicine formulae in a thorough and systematic manner.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Powders/chemistry*
;
Animals
;
Medicine, Chinese Traditional
9.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
10.Identification and expression analysis of AP2/ERF family members in Lonicera macranthoides.
Si-Min ZHOU ; Mei-Ling QU ; Juan ZENG ; Jia-Wei HE ; Jing-Yu ZHANG ; Zhi-Hui WANG ; Qiao-Zhen TONG ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2025;50(15):4248-4262
The AP2/ERF transcription factor family is a class of transcription factors widely present in plants, playing a crucial role in regulating flowering, flower development, flower opening, and flower senescence. Based on transcriptome data from flower, leaf, and stem samples of two Lonicera macranthoides varieties, 117 L. macranthoides AP2/ERF family members were identified, including 14 AP2 subfamily members, 61 ERF subfamily members, 40 DREB subfamily members, and 2 RAV subfamily members. Bioinformatics and differential gene expression analyses were performed using NCBI, ExPASy, SOMPA, and other platforms, and the expression patterns of L. macranthoides AP2/ERF transcription factors were validated via qRT-PCR. The results indicated that the 117 LmAP2/ERF members exhibited both similarities and variations in protein physicochemical properties, AP2 domains, family evolution, and protein functions. Differential gene expression analysis revealed that AP2/ERF transcription factors were primarily differentially expressed in the flowers of the two L. macranthoides varieties, with the differentially expressed genes mainly belonging to the ERF and DREB subfamilies. Further analysis identified three AP2 subfamily genes and two ERF subfamily genes as potential regulators of flower development, two ERF subfamily genes involved in flower opening, and two ERF subfamily genes along with one DREB subfamily gene involved in flower senescence. Based on family evolution and expression analyses, it is speculated that AP2/ERF transcription factors can regulate flower development, opening, and senescence in L. macranthoides, with ERF subfamily genes potentially serving as key regulators of flowering duration. These findings provide a theoretical foundation for further research into the specific functions of the AP2/ERF transcription factor family in L. macranthoides and offer important theoretical insights into the molecular mechanisms underlying floral phenotypic differences among its varieties.
Plant Proteins/chemistry*
;
Gene Expression Regulation, Plant
;
Transcription Factors/chemistry*
;
Lonicera/classification*
;
Flowers/metabolism*
;
Phylogeny
;
Gene Expression Profiling
;
Multigene Family


Result Analysis
Print
Save
E-mail