1.The Refinement and Innovation of The UV Cross-linking and Immunoprecipitation
Jia-Min ZHAO ; Cheng-Jiang LU ; Ming YANG ; Nashun BUHE ; Gang WANG
Progress in Biochemistry and Biophysics 2025;52(4):1036-1052
RNA-binding proteins (RBPs) are ubiquitous components within cells, fulfilling essential functions in a myriad of biological processes. These proteins interact with RNA molecules to regulate gene expression at various levels, including transcription, splicing, transport, localization, translation, and degradation. Understanding the intricate network of RBP-RNA interactions is crucial for deciphering the complex regulatory mechanisms that govern cellular function and organismal development. Ultravidet (UV) cross-linking and immunoprecipitation (CLIP) stands out as a powerful approach designed to map the precise locations where RBPs bind to RNA. By using UV light to create covalent bonds between proteins and RNA, followed by immunoprecipitation to isolate the protein-RNA complexes, researchers can identify the direct targets of specific RBPs. The advent of high-throughput sequencing technologies has revolutionized CLIP, enabling the identification of not only the types but also the exact sequences of RNA bound by RBPs on a genome-wide scale. The evolution of CLIP has led to the development of specialized variants, each with unique features that address specific challenges and expand the scope of what can be studied. High-throughput sequencing CLIP (HITS-CLIP) was one of the first advancements, significantly increasing the throughput and resolution of RNA-protein interaction mapping. Photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) introduced the use of photoactivatable ribonucleosides to enhance cross-linking efficiency and specificity, reducing background noise and improving the detection of low-abundance RNA-protein interactions. Individual-nucleotide resolution CLIP (iCLIP) further refined the technique, achieving unprecedented precision by resolving individual nucleotides involved in RBP binding, which is particularly valuable for studying the fine details of RNA structure and function. Despite the remarkable progress, there remains room for improvement in CLIP technology. Researchers continue to seek methods to increase sensitivity, reduce technical variability, and improve the reproducibility of results. Advances in sample preparation, data analysis algorithms, and computational tools are critical for addressing these challenges. Moreover, the application of CLIP to more diverse biological systems, including non-model organisms and clinical samples, requires the development of tailored protocols and the optimization of existing ones. Looking forward, the field of RNA biology is poised to benefit greatly from ongoing innovations in CLIP technology. The exploration of non-canonical RNA-protein interactions, such as those involving long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), promises to reveal new layers of cellular regulation and may lead to the discovery of novel therapeutic targets. Furthermore, integrating CLIP data with other omics approaches, such as proteomics and metabolomics, will provide a more comprehensive understanding of the dynamic interplay between RNA and its binding partners within the cell. In conclusion, the continuous refinement and expansion of CLIP techniques have not only deepened our knowledge of RNA biology but have also opened up new avenues for investigating the molecular underpinnings of health and disease. As the technology matures, it is expected to play an increasingly pivotal role in both basic and applied research, contributing to the advancement of medical science and biotechnology.
2.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
3.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
4.Temporal trend in mortality due to congenital heart disease in China from 2008 to 2021.
Youping TIAN ; Xiaojing HU ; Qing GU ; Miao YANG ; Pin JIA ; Xiaojing MA ; Xiaoling GE ; Quming ZHAO ; Fang LIU ; Ming YE ; Weili YAN ; Guoying HUANG
Chinese Medical Journal 2025;138(6):693-701
BACKGROUND:
Congenital heart disease (CHD) is a leading cause of birth defect-related mortality. However, more recent CHD mortality data for China are lacking. Additionally, limited studies have evaluated sex, rural-urban, and region-specific disparities of CHD mortality in China.
METHODS:
We designed a population-based study using data from the Dataset of National Mortality Surveillance in China between 2008 and 2021. We calculated age-adjusted CHD mortality using the sixth census data of China in 2010 as the standard population. We assessed the temporal trends in CHD mortality by age, sex, area, and region from 2008 to 2021 using the joinpoint regression model.
RESULTS:
From 2008 to 2021, 33,534 deaths were attributed to CHD. The period witnessed a two-fold decrease in the age-adjusted CHD mortality from 1.61 to 0.76 per 100,000 persons (average annual percent change [AAPC] = -5.90%). Females tended to have lower age-adjusted CHD mortality than males, but with a similar decline rate from 2008 to 2021 (females: AAPC = -6.15%; males: AAPC = -5.84%). Similar AAPC values were observed among people living in urban (AAPC = -6.64%) and rural (AAPC = -6.12%) areas. Eastern regions experienced a more pronounced decrease in the age-adjusted CHD mortality (AAPC = -7.86%) than central (AAPC = -5.83%) and western regions (AAPC = -3.71%) between 2008 and 2021. Approximately half of the deaths (46.19%) due to CHD occurred during infancy. The CHD mortality rates in 2021 were lower than those in 2008 for people aged 0-39 years, with the largest decrease observed among children aged 1-4 years (AAPC = -8.26%), followed by infants (AAPC = -7.01%).
CONCLUSIONS
CHD mortality in China has dramatically decreased from 2008 to 2021. The slower decrease in CHD mortality in the central and western regions than in the eastern regions suggested that public health policymakers should pay more attention to health resources and health education for central and western regions.
Humans
;
Heart Defects, Congenital/mortality*
;
Male
;
Female
;
China/epidemiology*
;
Infant
;
Child, Preschool
;
Adult
;
Child
;
Adolescent
;
Infant, Newborn
;
Middle Aged
;
Young Adult
;
Aged
;
Rural Population
5.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
6.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
7.Differential Analysis of Heart Rate Variability in Repeated Continuous Performance Tests Among Healthy Young Men
Chung-Chih HSU ; Tien-Yu CHEN ; Jia-Yi LI ; Terry B. J. KUO ; Cheryl C. H. YANG
Psychiatry Investigation 2025;22(2):148-155
Objective:
Executive function correlates with the parasympathetic nervous system (PNS) based on static heart rate variability (HRV) measurements. Our study advances this understanding by employing dynamic assessments of the PNS to explore and quantify its relationship with inhibitory control (IC).
Methods:
We recruited 31 men aged 20–35 years. We monitored their electrocardiogram (ECG) signals during the administration of the Conners’ Continuous Performance Test-II (CCPT-II) on a weekly basis over 2 weeks. HRV analysis was performed on ECG-derived RR intervals using 5-minute windows, each overlapping for the next 4 minutes to establish 1-minute intervals. For each time window, the HRV metrics extracted were: mean RR intervals, standard deviation of NN intervals (SDNN), low-frequency power with logarithm (lnLF), and high-frequency power with logarithm (lnHF). Each value was correlated with detectability and compared to the corresponding baseline value at t0.
Results:
Compared with the baseline level, SDNN and lnLF showed marked decreases during CCPT-II. The mean values of HRV showed significant correlation with d’, including mean SDNN (R=0.474, p=0.012), mean lnLF (R=0.390, p=0.045), and mean lnHF (R=0.400, p=0.032). In the 14th time window, the significant correlations included SDNN (R=0.578, p=0.002), lnLF (R=0.493, p=0.012), and lnHF (R=0.432, p=0.031). Significant correlation between d’ and HRV parameters emerged only during the initial CCPT-II.
Conclusion
A significant correlation between PNS and IC was observed in the first session alone. The IC in the repeated CCPT-II needs to consider the broader neural network.
8.Preparation and evaluation of long-acting light-protective nanogel based on fullerenol-cerium oxide composite system
Tianlong ZHANG ; Jia LIU ; Qing ZHAO ; Yue ZHOU ; Ming YANG ; Qianyu LUO
China Pharmacy 2025;36(17):2106-2112
OBJECTIVE To develop a long-acting light-protective nanogel with both physical barrier and chemical clearance functions, and evaluate its performance. METHODS The photoprotective nanogel composed of mussel mucin and sodium hyaluronate was constructed based on a fullerenol-cerium oxide composite nano system, namely fullerenol-cerium oxide nanogel (FCN), and was characterized. The antioxidant capacity of FCN was evaluated using in vitro free radical scavenging experiments; its UV shielding ability was assessed by using an SPF value detector; its biosafety was assessed according to the requirements of the Guidelines for Drug Safety Evaluation; skin adhesion was assessed using small animal 3D live imaging technology; its sun protection ability was assessed through skin sunscreen detection and histopathological observation. RESULTS The average particle sizes of cerium oxide and fullerenol nanoparticles in FCN were about 20 and 10 nm, respectively, and FCN exhibited good UV absorption and free radical scavenging abilities. SPF value of FCN was 58.95±0.82, and the ultraviolet A protection level value was 6.21±0.15. No pathogenic colonies such as Staphylococcus aureus, were detected in the nanogel, and the contents of lead, arsenic, mercury and cadmium all met the standards for pharmaceutical excipients; FCN group did not show any irritating reactions such as erythema, edema, or desquamation; blood biochemical indicators of the FCN group were within the normal reference range. The material clearance rate of mice in the artificial sweat flushing group was less than 30%, while the material clearance rate of mice in the dry cleaning group reached about 92%. The mice in the protective group did not show obvious erythema or ulcer formation throughout the experiment. Histopathology showed that the fibers were arranged in an orderly manner, and the number of collagen fibers was close to that of the control group. CONCLUSIONS The FCN formulation constructed in this study meets the relevant requirements of the Chinese Pharmacopoeia, has good safety and skin compatibility, and achieves dual synergistic protection of UV shielding and free radical scavenging.
9.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
10.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult

Result Analysis
Print
Save
E-mail