1.Clinical diagnostic value of 18 MHz color Doppler ultrasonography in epiretinal membrane
Jun ZHAO ; Ya'nan LI ; Hongqiang JIA ; Min LIU ; Junping BAI
International Eye Science 2025;25(1):144-147
AIM: To explore the diagnostic value of 18 MHz color Doppler ultrasonography for epiretinal membrane.METHODS: A total of 44 cases(80 eyes)of patients with proposed diagnosis of cataract and vitreous opacity by fundus examination in our hospital between January 2020 and January 2022 were collected, and the affected eyes were examined by optical coherence tomography(OCT)and 18 MHz color Doppler ultrasonography, and the differences in the diagnostic sensitivity, specificity, and accuracy were compared between 18 MHz color Doppler ultrasonography and OCT for the diagnosis of epiretinal membrane.RESULTS: In the 80 eyes detected by 18 MHz color Doppler ultrasonography, 62 had epiretinal membrane and 18 had non epiretinal membrane. Totally 54 eyes were confirmed to have epiretinal membrane by OCT, 13 eyes were not diagnosed with epiretinal membrane, 5 eyes were missed diagnosis, and 8 eyes were misdiagnosed. The diagnostic consistency between 18 MHz color Doppler ultrasonography and OCT was high(Kappa=0.892, P<0.05); the 18 MHz color Doppler ultrasonography detection sensitivity of epiretinal membrane was 92%, specificity was 62%, missed diagnosis rate was 8%, misdiagnosis rate was 38%, and accuracy was 84%; compared with OCT detection, 18 MHz color Doppler ultrasonography detected a lower specificity, correct rate, positive prediction accuracy, negative prediction accuracy, and higher misdiagnosis rate(all P<0.05), and the difference in diagnostic sensitivity compared with leakage rate was not statistically significant(all P>0.05).CONCLUSION: 18 MHz color Doppler ultrasonography has some value in identifying epiretinal membrane lesions and is consistent with OCT testing.
2.Association between herbicide exposure and liver enzyme levels in a middle-aged and elderly population
Weiya LI ; Zhuoya ZHAO ; Xu CHENG ; Jun AN ; Shiyang ZHANG ; Chengyong JIA ; Meian HE
Journal of Environmental and Occupational Medicine 2025;42(6):699-705
Background The widespread use of herbicides has led to environmental contamination and has implications for human health. The liver is an important organ for the detoxification of environmental pollutants; however, studies on the association between herbicide exposure and liver function are limited. Objectives To investigate the association between baseline serum herbicide levels and changes in liver enzyme levels and liver enzyme abnormalities over a 5-year period in middle-aged and older adults. Methods This study was based on a nested case-control population of type 2 diabetes established in the Dongfeng-Tongji cohort, with a total of
3.Effect of high fat diet intake on pharmacokinetics of metronidazole tablets in healthy Chinese volunteers
Na ZHAO ; Cai-Hui GUO ; Ya-Li LIU ; Hao-Jing SONG ; Ben SHI ; Yi-Ting HU ; Cai-Yun JIA ; Zhan-Jun DONG
The Chinese Journal of Clinical Pharmacology 2024;40(1):102-106
Objective To evaluate the effects of high-fat diet on the pharmacokinetics of metronidazole in Chinese healthy adult subjects.Methods This program is designed according to a single-center,randomized,open,single-dose trial.Forty-seven healthy subjects were assigned to receive single dose of metronidazole tablets 200 mg in either fasting and high-fat diet state,and blood samples were taken at different time points,respectively.The concentrations of metronidazole in plasma were determined by high performance liquid chromatography-mass spectromentry.Results The main pharmacokinetic parameters of metronidazole in fasting state and high-fat diet state were as follows:Cmax were(4 799.13±1 195.32)and(4 044.17±773.98)ng·mL-1;tmax were 1.00 and 2.25 h;t1/2 were(9.11±1.73)and(9.37±1.79)h;AUC0_t were(5.59±1.19)x 104 and(5.51±1.18)x 104 ng·mL-1·h;AUC0_∞ were(5.79±1.33)x 104 and(5.74±1.32)× 104 ng·mL-1·h.Compared to the fasting state,the tmaxof the drug taken after a high fat diet was delayed by 1.25 h(P<0.01),Cmax,AUC0_t,AUC0-∞ were less or decreased in different degrees,but the effects were small(all P>0.05).Conclusion High-fat diet has little effects on the pharmacokinetic parameters of metronidazole,which does not significantly change the degree of drug absorption,but can significantly delay the time to peak.
4.Research status of anti-inflammatory effect of traditional Chinese medicine based on NLRP3 inflammatory body
Fu-Mei XU ; Jun-Yuan ZENG ; Lei ZHAO ; Qi-Li ZHANG ; Peng-Fei XIA ; Yin-Qiang JIA ; Jie WANG ; Peng-Xia FANG ; Yan-Li XU
The Chinese Journal of Clinical Pharmacology 2024;40(6):923-927
Inflammasome is a kind of intracellular polyprotein complex,which is an important component of the complex system of local inflammatory microenvironment after human tissue damage.When the inflammasome is activated,it induces the activation of cysteine aspartate proteinase 1(caspase-1),mediates the maturation and secretion of proinflammatory cytokines,such as interleukin(IL)-1 β and IL-18,and induces cell death,which plays an important role in regulating the host immune response to pathogen infection and tissue repair of cell damage.Nod-like receptor protein 3(NLRP3)inflammatory body,which is composed of NLRP3,pro-cysteine aspartic acid specific protease-1(pro-caspase-1)and apoptosis-related spot-like protein(ASC),is the most deeply and widely studied type of inflammatory body,which plays an important role in the regulation of inflammation.When NLRP3 inflammatory bodies are activated,inflammatory mediators are produced and released,which participate in the occurrence and development of a variety of inflammatory diseases.Some studies have shown that traditional Chinese medicine can improve the pathological state of a variety of diseases by inhibiting NLRP3 inflammatory bodies,and play a role in the prevention and treatment of a variety of inflammatory diseases,including cardiovascular diseases,joint inflammation,diabetes and so on.This paper systematically combs the mechanism of NLRP3 inflammatory bodies,and summarizes the latest research reports on the effects of traditional Chinese medicine compound prescription,traditional Chinese medicine monomers and traditional Chinese medicine extracts on NLRP3 inflammatory bodies in the treatment of inflammatory diseases,in order to provide new ideas for the further study of the pathogenesis and drug treatment of many inflammatory diseases.
5.Development of the robotic digestive endoscope system and an experimental study on mechanistic model and living animals (with video)
Bingrong LIU ; Yili FU ; Kaipeng LIU ; Deliang LI ; Bo PAN ; Dan LIU ; Hao QIU ; Xiaocan JIA ; Jianping CHEN ; Jiyu ZHANG ; Mei WANG ; Fengdong LI ; Xiaopeng ZHANG ; Zongling KAN ; Jinghao LI ; Yuan GAO ; Min SU ; Quanqin XIE ; Jun YANG ; Yu LIU ; Lixia ZHAO
Chinese Journal of Digestive Endoscopy 2024;41(1):35-42
Objective:To develop a robotic digestive endoscope system (RDES) and to evaluate its feasibility, safety and control performance by experiments.Methods:The RDES was designed based on the master-slave control system, which consisted of 3 parts: the integrated endoscope, including a knob and button robotic control system integrated with a gastroscope; the robotic mechanical arm system, including the base and arm, as well as the endoscopic advance-retreat control device (force-feedback function was designed) and the endoscopic axial rotation control device; the control console, including a master manipulator and an image monitor. The operator sit far away from the endoscope and controlled the master manipulator to bend the end of the endoscope and to control advance, retract and rotation of the endoscope. The air supply, water supply, suction, figure fixing and motion scaling switching was realized by pressing buttons on the master manipulator. In the endoscopy experiments performed on live pigs, 5 physicians each were in the beginner and advanced groups. Each operator operated RDES and traditional endoscope (2 weeks interval) to perform porcine gastroscopy 6 times, comparing the examination time. In the experiment of endoscopic circle drawing on the inner wall of the simulated stomach model, each operator in the two groups operated RDES 1∶1 motion scaling, 5∶1 motion scaling and ordinary endoscope to complete endoscopic circle drawing 6 times, comparing the completion time, accuracy (i.e. trajectory deviation) and workload.Results:RDES was operated normally with good force feedback function. All porcine in vivo gastroscopies were successful, without mucosal injury, bleeding or perforation. In beginner and advanced groups, the examination time of both RDES and ordinary endoscopy tended to decrease as the number of operations increased, but the decrease in time was greater for operating RDES than for operating ordinary endoscope (beginner group P=0.033; advanced group P=0.023). In the beginner group, the operators operating RDES with 1∶1 motion scaling or 5∶1 motion scaling to complete endoscopic circle drawing had shorter completion time [1.68 (1.40, 2.17) min, 1.73 (1.47, 2.37) min VS 4.13 (2.27, 5.16) min, H=32.506, P<0.001], better trajectory deviation (0.50±0.11 mm, 0.46±0.11 mm VS 0.82±0.26 mm, F=38.999, P<0.001], and less workload [42.00 (30.00, 50.33) points, 43.33 (35.33, 54.00) points VS 52.67 (48.67, 63.33) points, H=20.056, P<0.001] than operating ordinary endoscope. In the advanced group, the operators operating RDES with 1∶1 or 5∶1 motion scaling to complete endoscopic circle drawing had longer completion time than operating ordinary endoscope [1.72 (1.37, 2.53) min, 1.57 (1.25, 2.58) min VS 1.15 (0.86, 1.58) min, H=13.233, P=0.001], but trajectory deviation [0.47 (0.13, 0.57) mm, 0.44 (0.39, 0.58) mm VS 0.52 (0.42, 0.59) mm, H=3.202, P=0.202] and workload (44.62±21.77 points, 41.24±12.57 points VS 44.71±17.92 points, F=0.369, P=0.693) were not different from those of the ordinary endoscope. Conclusion:The RDES enables remote control, greatly reducing the endoscopists' workload. Additionally, it gives full play to the cooperative motion function of the large and small endoscopic knobs, making the control more flexible. Finally, it increases motion scaling switching function to make the control of endoscope more flexible and more accurate. It is also easy for beginners to learn and master, and can shorten the training period. So it can provide the possibility of remote endoscopic control and fully automated robotic endoscope.
6.Pharmacokinetics of wogonin-aloperine cocrystal in rats
Zhong-shui XIE ; Chun-xue JIA ; Yu-lu LIANG ; Xiao-jun ZHAO ; Bin-ran LI ; Jing-zhong HAN ; Hong-juan WANG ; Jian-mei HUANG
Acta Pharmaceutica Sinica 2024;59(9):2606-2611
Pharmaceutical cocrystals is an advanced technology to improve the physicochemical and biological properties of drugs. However, there are few studies on the
7.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.
8.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.
9.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.
10.Construction and validation of predictive models for intravenous immunoglobulin–resistant Kawasaki disease using an interpretable machine learning approach
Linfan DENG ; Jian ZHAO ; Ting WANG ; Bin LIU ; Jun JIANG ; Peng JIA ; Dong LIU ; Gang LI
Clinical and Experimental Pediatrics 2024;67(8):405-414
Background:
Intravenous immunoglobulin (IVIG)-resistant Kawasaki disease is associated with coronary artery lesion development.Purpose: This study aimed to explore the factors associated with IVIG-resistance and construct and validate an interpretable machine learning (ML) prediction model in clinical practice.
Methods:
Between December 2014 and November 2022, 602 patients were screened and risk factors for IVIG-resistance investigated. Five ML models are used to establish an optimal prediction model. The SHapley Additive exPlanations (SHAP) method was used to interpret the ML model.
Results:
Na+, hemoglobin (Hb), C-reactive protein (CRP), and globulin were independent risk factors for IVIG-resistance. A nonlinear relationship was identified between globulin level and IVIG-resistance. The XGBoost model exhibited excellent performance, with an area under the receiver operating characteristic curve of 0.821, accuracy of 0.748, sensitivity of 0.889, and specificity of 0.683 in the testing set. The XGBoost model was interpreted globally and locally using the SHAP method.
Conclusion
Na+, Hb, CRP, and globulin levels were independently associated with IVIG-resistance. Our findings demonstrate that ML models can reliably predict IVIG-resistance. Moreover, use of the SHAP method to interpret the established XGBoost model's findings would provide evidence of IVIG-resistance and guide the individualized treatment of Kawasaki disease.

Result Analysis
Print
Save
E-mail