1.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
2.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
3.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
4.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
5.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
6.Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.
Hao-Wei BAI ; Na LI ; Yu-Xiang ZHANG ; Jia-Qiang LUO ; Ru-Hui TIAN ; Peng LI ; Yu-Hua HUANG ; Fu-Rong BAI ; Cun-Zhong DENG ; Fu-Jun ZHAO ; Ren MO ; Ning CHI ; Yu-Chuan ZHOU ; Zheng LI ; Chen-Cheng YAO ; Er-Lei ZHI
Asian Journal of Andrology 2025;27(2):268-275
Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Humans
;
Male
;
Azoospermia/genetics*
;
Meiosis/genetics*
;
Spermatogenesis/genetics*
;
Adult
;
Exome Sequencing
;
Microtubule-Associated Proteins/genetics*
;
Alleles
;
Infertility, Male/genetics*
7.Relationship between sterol carrier protein 2 gene and prostate cancer: Based on single-cell RNA sequencing combined with Mendelian randomization.
Jia-Xin NING ; Shu-Hang LUO ; Hao-Ran WANG ; Hui-Min HOU ; Ming LIU
National Journal of Andrology 2025;31(5):403-411
Objective: To investigate the relationship between the lipid metabolism-related gene sterol carrier protein 2(SCP2) and prostate cancer (PCa) from a multi-omics perspective using single-cell transcriptomes combined with Mendelian randomization. Methods: Single-cell transcriptome data of benign and malignant prostate tissues were obtained from GSE120716, GSE157703 and GSE141445 datasets, respectively. Integration, quality control and annotation were performed on the data to categorize the epithelial cells into high and low SCP2 expression groups, followed by further differential and trajectory analyses. Single nucleotide polymorphism (SNP) data for SCP2 expression quantitative trait loci (eQTL) were subsequently downloaded from Genotype-Tissue Expression (GTEx) and investigated from the PCa Society Cancer-Related Genomic Alteration Panel for the Investigation of Cancer-Related Alterations (PRACTICAL) to obtain PCa outcome data for Mendelian randomization analysis to validate the causal relationship between SCP2 and PCa. Results: High SCP2-expressing epithelial cells had higher energy metabolism and proliferation capacity with low immunotherapy response and metastatic tendency. Trajectory analysis showed that epithelial cells with high SCP2 expression may have a higher degree of malignancy, and SCP2 may be a key marker gene for differentiation of malignant epithelial cells in the prostate. Further Mendelian randomization results showed a significant causal relationship between SCP2 and PCa development (OR=1.045, 95% CI: 1.010 -1.083, P=0.011). Conclusion: By combining single-cell transcriptome and Mendelian randomization, the role of the lipid metabolism-related gene SCP2 in PCa development has been confirmed, and new targets and therapeutic directions for PCa treatment have been provided.
Humans
;
Prostatic Neoplasms/genetics*
;
Male
;
Mendelian Randomization Analysis
;
Polymorphism, Single Nucleotide
;
Quantitative Trait Loci
;
Single-Cell Analysis
;
Sequence Analysis, RNA
;
Carrier Proteins/genetics*
;
Transcriptome
;
Lipid Metabolism
8.Specific effect of inserted sham acupuncture and its impact on the estimation of acupuncture treatment effect in randomized controlled trials: A systematic survey.
Xiao-Chao LUO ; Jia-Li LIU ; Ming-Hong YAO ; Ye-Meng CHEN ; Arthur Yin FAN ; Fan-Rong LIANG ; Ji-Ping ZHAO ; Ling ZHAO ; Xu ZHOU ; Xiao-Ying ZHONG ; Jia-Hui YANG ; Bo LI ; Ying ZHANG ; Xin SUN ; Ling LI
Journal of Integrative Medicine 2025;23(6):630-640
BACKGROUND:
The use of inserted sham acupuncture as a placebo in randomized controlled trials (RCTs) is controversial, because it may produce specific effects that cause an underestimation of the effect of acupuncture treatment.
OBJECTIVE:
This systematic survey investigates the magnitude of insert-specific effects of sham acupuncture and whether they affect the estimation of acupuncture treatment effects.
SEARCH STRATEGY:
PubMed, Embase and Cochrane Central Register of Controlled Trials were searched to identify acupuncture RCTs from their inception until December 2022.
INCLUSION CRITERIA:
RCTs that evaluated the effects of acupuncture compared to sham acupuncture and no treatment.
DATA EXTRACTION AND ANALYSIS:
The total effect measured for an acupuncture treatment group in RCTs were divided into three components, including the natural history and/or regression to the mean effect (controlled for no-treatment group), the placebo effect, and the specific effect of acupuncture. The first two constituted the contextual effect of acupuncture, which is mimicked by a sham acupuncture treatment group. The proportion of acupuncture total effect size was considered to be 1. The proportion of natural history and/or regression to the mean effect (PNE) and proportional contextual effect (PCE) of included RCTs were pooled using meta-analyses with a random-effect model. The proportion of acupuncture placebo effect was the difference between PCE and PNE in RCTs with non-inserted sham acupuncture. The proportion of insert-specific effect of sham acupuncture (PIES) was obtained by subtracting the proportion of acupuncture placebo effect and PNE from PCE in RCTs with inserted sham acupuncture. The impact of PIES on the estimation of acupuncture's treatment effect was evaluated by quantifying the percentage of RCTs that the effect of outcome changed from no statistical difference to statistical difference after removing PIES in the included studies, and the impact of PIES was externally validated in other acupuncture RCTs with an inserted sham acupuncture group that were not used to calculate PIES.
RESULTS:
This analysis included 32 studies with 5492 patients. The overall PNE was 0.335 (95% confidence interval [CI], 0.255-0.415) and the PCE of acupuncture was 0.639 (95% CI, 0.567-0.710) of acupuncture's total effect. The proportional contribution of the placebo effect to acupuncture's total effect was 0.191, and the PIES was 0.189. When we modeled the exclusion of the insert-specific effect of sham acupuncture, the acupuncture treatment effect changed from no difference to a significant difference in 45.45% of the included RCTs, and in 40.91% of the external validated RCTs.
CONCLUSION
The insert-specific effect of sham acupuncture in RCTs represents 18.90% of acupuncture's total effect and significantly affects the evaluation of the acupuncture treatment effect. More than 40% of RCTs that used inserted sham acupuncture would draw different conclusions if the PIES had been controlled for. Considering the impact of the insert-specific effect of sham acupuncture, caution should be taken when using inserted sham acupuncture placebos in RCTs. Please cite this article as: Luo XC, Liu JL, Yao MH, Chen YM, Fan AY, Liang FR, Zhao JP, Zhao L, Zhou X, Zhong XY, Yang JH, Li B, Zhang Y, Sun X, Li L. Specific effect of inserted sham acupuncture and its impact on the estimation of acupuncture treatment effect in randomized controlled trials: A systematic survey. J Integr Med. 2025; 23(6):630-640.
Acupuncture Therapy/methods*
;
Humans
;
Randomized Controlled Trials as Topic
;
Placebo Effect
;
Placebos
;
Treatment Outcome
9.Metabonomic study of blood of mice with high-voltage electrical injury
Si-Yu CHEN ; Hui WANG ; Yan LUO ; Jia-Wen TAO ; Wen-Juan ZHANG ; Yang YUE ; Zheng-Ping YU ; Hui-Feng PI
Journal of Regional Anatomy and Operative Surgery 2024;33(2):100-106
Objective To explore the changes of metabonomics in blood of mice after high-voltage electric shock,then screen out the significantly changed differential metabolites and metabolic pathways.Methods The head of C57BL/6J mice was subjected to high-voltage electric shock(electric shock group)or exposed to acoustic and optical stimulation of high-voltage electric(control group),then the whole blood from mice were collected to separate serum.The dual platform combined metabonomic analysis based on gas chromatography-mass spectrometer(GC-MS)and liquid chromatography-mass spectrometer(LC-MS)was performed and orthogonal partial least squares discriminant analysis(OPLS-DA)was used to screen the differential metabolites and related metabolic pathways.Results A total of 415 differential metabolites were screened out in metabonomics in blood of mice after high-voltage electric shock,including 187 up-regulated and 228 down-regulated metabolites.These differentially metabolites were significantly enriched in metabolic pathways including central carbon metabolism in cancer,glucagon signaling pathway,etc.Conclusion By establishing the model of high-voltage electrical injury on experimental mice,this study reveals the significant change of metabolite content and metabolic pathway in blood by high-voltage electrical injury.Which provides a basis for the damage of blood metabolic activity by high-voltage electrical injury,and suggests the potential harm of high-voltage electrical injury to blood metabolic activity in the whole body.
10.Research progress in the immune escape mechanism of Trichinella spiralis
Yan-Hong QIAN ; Shuai SONG ; Xiao-Hui WEN ; Chun-Ling JIA ; Dian-Hong LYU ; Zi-Guo YUAN ; Sheng-Jun LUO
Chinese Journal of Zoonoses 2024;40(1):70-75
Trichinosis is a global food-borne zoonotic parasitic disease caused by Trichinella spiralis(T.spiralis),which causes serious harm to animal production,and the public health safety of humans and animals.T.spiralis has a complex devel-opment history,and its entire life cycle is completed in the same host.To coexist with the host,it has evolved various immune escape mechanisms for avoiding immune clearance by the host,thus establishing long-term chronic infection.In this study,to aid in understanding the pathogenic mechanism of T.spiralis,the immune escape mechanism of Trichinella is discussed from three aspects:the molecular role of antigens in various stages,the immune regulatory effect on the host,and the formation of cysts to generate immune isolation.

Result Analysis
Print
Save
E-mail