1.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
2.Development and validation of a prediction score for subtype diagnosis of primary aldosteronism.
Ping LIU ; Wei ZHANG ; Jiao WANG ; Hongfei JI ; Haibin WANG ; Lin ZHAO ; Jinbo HU ; Hang SHEN ; Yi LI ; Chunhua SONG ; Feng GUO ; Xiaojun MA ; Qingzhu WANG ; Zhankui JIA ; Xuepei ZHANG ; Mingwei SHAO ; Yi SONG ; Xunjie FAN ; Yuanyuan LUO ; Fangyi WEI ; Xiaotong WANG ; Yanyan ZHAO ; Guijun QIN
Chinese Medical Journal 2025;138(23):3206-3208
3.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
4.Research and Application of Nanozymes in Disease Treatment
Hang LIU ; Yi-Xuan LI ; Zi-Tong QIN ; Jia-Wen ZHAO ; Yue-Jie ZHOU ; Xiao-Fei LIU
Progress in Biochemistry and Biophysics 2024;51(3):575-589
Nanozyme is novel nanoparticle with enzyme-like activity, which can be classified into peroxidase-like nanozyme, catalase-like nanozyme, superoxide dismutase-like nanozyme, oxidase-like nanozyme and hydrolase-like nanozyme according to the type of reaction they catalyze. Since researchers first discovered Fe3O4 nanoparticles with peroxidase-like activity in 2007, a variety of nanoparticles have been successively found to have catalytic activity and applied in bioassays, inflammation control, antioxidant damage and tumor therapy, playing a key role in disease diagnosis and treatment. We summarize the use of nanozymes with different classes of enzymatic activity in the diagnosis and treatment of diseases and describe the main factors influencing nanozyme activity. A Mn-based peroxidase-like nanozyme that induces the reduction of glutathione in tumors to produce glutathione disulfide and Mn2+, which induces the production of reative oxygen species (ROS) in tumor cells by breaking down H2O2 in physiological media through Fenton-like action, thereby inhibiting tumor cell growth. To address the limitation of tumor tissue hypoxia during photodynamic tumor therapy, the effect of photodynamic therapy is significantly enhanced by using hydrogen peroxide nanozymes to catalyze the production of oxygen from H2O2. In pathological states, where excess superoxide radicals are produced in the body, superoxide dismutase-like nanozymes are able to selectively regulate intracellular ROS levels, thereby protecting normal cells and slowing down the degradation of cellular function. Based on this principle, an engineered nanosponge has been designed to rapidly scavenge free radicals and deliver oxygen in time to save nerve cells before thrombolysis. Starvation therapy, in which glucose oxidase catalyzes the hydrolysis of glucose to gluconic acid and hydrogen peroxide in cancer cells with the involvement of oxygen, attenuates glycolysis and the production of intermediate metabolites such as nucleotides, lipids and amino acids, was used to synthesize an oxidase-like nanozyme that achieved effective inhibition of tumor growth. Furthermore, by fine-tuning the Lewis acidity of the metal cluster to improve the intrinsic activity of the hydrolase nanozyme and providing a shortened ligand length to increase the density of its active site, a hydrolase-like nanozyme was successfully synthesized that is capable of cleaving phosphate bonds, amide bonds, glycosidic bonds and even biofilms with high efficiency in hydrolyzing the substrate. All these effects depend on the size, morphology, composition, surface modification and environmental media of the nanozyme, which are important aspects to consider in order to improve the catalytic efficiency of the nanozyme and have important implications for the development of nanozyme. Although some progress has been made in the research of nanozymes in disease treatment and diagnosis, there are still some problems, for example, the catalytic rate of nanozymes is still difficult to reach the level of natural enzymes in vivo, and the toxic effects of some heavy metal nanozymes material itself. Therefore, the construction of nanozyme systems with multiple functions, good biocompatibility and high targeting efficiency, and their large-scale application in diagnosis and treatment is still an urgent problem to be solved. (1) To improve the selectivity and specificity of nanozymes. By using antibody coupling, the nanoparticles are able to specifically bind to antigens that are overexpressed in certain cancer cells. It also significantly improves cellular internalization through antigen-mediated endocytosis and enhances the enrichment of nanozymes in target tissues, thereby improving targeting during tumor therapy. Some exogenous stimuli such as laser and ultrasound are used as triggers to control the activation of nanozymes and achieve specific activation of nanozyme. (2) To explore more practical and safer nanozymes and their catalytic mechanisms: biocompatible, clinically proven material molecules can be used for the synthesis of nanoparticles. (3) To solve the problem of its standardization and promote the large-scale clinical application of nanozymes in biomonitoring. Thus, it can go out of the laboratory and face the market to serve human health in more fields, which is one of the future trends of nanozyme development.
5.Effect of early warning score combined with SBAR communication model on early warning of high-risk neonates
Li ZHAO ; Juan YIN ; Beibei JIA ; Yongmei HUANG ; Meifang HANG ; Limin DONG
Modern Clinical Nursing 2024;23(2):40-46
Objective To investigate the effect of early warning score system combined with(situation,background,ssessment,recommendation,SBAR)communication model in early warning of high-risk neonates,therefore to provide an effective communication method for an effective communication method to assess the changes of condition in neonates.Methods A before-after study model was adopted in the study.A total of 270 high-risk neonates admitted to the ward of the Department of Neonatology in a tertiary hospital between August and September 2022 were selected as research subjects.The high-risk neonates admitted in hospital in August were assigned in a control group,and those admitted in September were assigned in an trial group,with 135 neonates per group.Routine care was carried out in the control group,while early warning scoring combined with SBAR communication model were applied in the trial group on top of the cares offered to the control group.The occurrence of early warning events,concordance rate of nurse warning event and doctor handling events,and the satisfaction rate of doctors with the nursing performance were compared between the two groups.Results A total of 63.6%of early warning events were triggered by nurses in the control group,while it was 92.6%in the trial group,with a statistically significant difference between the groups(χ2=16.622,P<0.001).The consistency of handling of early warning events between the nurses and doctors in the trial group(Kappa coefficient=0.926)was higher than that in the control group(Kappa coefficient=0.641).The satisfaction rates of the doctors with the nurses about specialist knowledge,ability in emergency events,mastery of disease,timely observation of disease progress,collaboration between doctors and nurses,working enthusiasm,communication capability and the psychological quality in the trial group were all significantly higher than those in the control group[80.0%-95.0%vs.30.0%-55.0%,all P<0.01].Conclusions The Early Warning Score system combined with SBAR communication model can help nurses to accurately evaluate the changes of disease in neonates,complete the communication with doctors timely and effectively.It improves the observation,communication and handling capability among the nurses as well as the satisfaction rate of doctors with nursing work.
6.Clinical Efficacy and Safety of Ixazomib-Containing Regimens in the Treatment of Patients with Multiple Myeloma
Ran CHEN ; Lian-Guo XUE ; Hang ZHOU ; Tao JIA ; Zhi-Mei CAI ; Yuan-Xin ZHU ; Lei MIAO ; Ji-Feng WEI ; Li-Dong ZHAO ; Jian-Ping MAO
Journal of Experimental Hematology 2024;32(2):483-492
Objective:To investigate the clinical efficacy and safety of ixazomib-containing regimens in the treatment of patients with multiple myeloma(MM).Methods:A retrospective analysis was performed on the clinical efficacy and adverse reactions of 32 MM patients treated with a combined regimen containing ixazomib in the Hematology Department of the First People's Hospital of Lianyungang from January 2020 to February 2022.Among the 32 patients,15 patients were relapsed and refractory multiple myeloma(R/RMM)(R/RMM group),17 patients who responded to bortezomib induction therapy but converted to ixazomib-containing regimen due to adverse events(AE)or other reasons(conversion treatment group).The treatment included IPD regimen(ixazomib+pomalidomide+dexamethasone),IRD regimen(ixazomib+lenalidomide+dexamethasone),ICD regimen(ixazomib+cyclophosphamide+dexamethasone),ID regimen(ixazomib+dexamethasone).Results:Of 15 R/RMM patients,overall response rate(ORR)was 53.3%(8/15),among them,1 achieved complete response(CR),2 achieved very good partial response(VGPR)and 5 achieved partial response(PR).The ORR of the IPD,IRD,ICD and ID regimen group were 100%(3/3),42.9%(3/7),33.3%(1/3),50%(1/2),respectively,there was no statistically significant difference in ORR between four groups(x2=3.375,P=0.452).The ORR of patients was 50%after first-line therapy,42.9%after second line therapy,60%after third line therapy or more,with no statistically significant difference among them(x2=2.164,P=0.730).In conversion treatment group,ORR was 88.2%(15/17),among them,6 patients achieved CR,5 patients achieved VGPR and 4 patients achieved PR.There was no statistically significant difference in ORR between the IPD(100%,3/3),IRD(100%,6/6),ICD(100%,3/3)and ID(60%,3/5)regimen groups(x2=3.737,P=0.184).The median progression-free survival(PFS)time of R/RMM patients was 9 months(95%CI:6.6-11.4 months),the median overall survival(OS)time was 18 months(95%CI:11.8-24.4 months).The median PFS time of conversion treatment group was 15 months(95%CI:7.3-22.7 months),the median OS time not reached.A total of 10 patients suffered grade 3-4 adverse event(AE).The common hematological toxicities were leukocytopenia,anemia,thrombocytopenia.The common non-hematological toxicities were gastrointestinal symptoms(diarrhea,nausea and vomit),peripheral neuropathy,fatigue and infections.Grade 1-2 peripheral neurotoxicity occurred in 7 patients.Conclusion:The ixazomib-based chemotherapy regimens are safe and effective in R/RMM therapy,particularly for conversion patients who are effective for bortezomib therapy.The AE was manageable and safe.
7.Preparation and identification of humanized monoclonal antibody against periostin
Xuejiao LI ; Hang ZHAO ; Shuo ZHANG ; Huiying KANG ; Yannan ZHOU ; Shuang JIA ; Xu LU ; Hongli ZHAO ; Yang HAI
Chinese Journal of Immunology 2024;40(12):2628-2633
Objective:To prepare a humanized monoclonal antibody against periostin and establish a stable cell line.Meth-ods:Based on anti-periostin mouse monoclonal antibody developed by our laboratory,total RNA was extracted,and variable region sequences were obtained by RT-PCR amplification of VH and VL genes.The mouse antibody CDR region was transplanted into the human antibody framework receptor region,and the gene was subcloned into the expression vector PATX-GS2,and stably transfected into CHO cells.Monoclonal cell lines were obtained by MSX pressure screening and limited dilution.Results:VH and VL genes were amplified by RT-PCR,and the sequence of the light and heavy chain variable region were determined.Antibody humanization were successfully stablished by CDR transplantation method a murine antibody to a human framework,and a eukaryotic expression plasmid was constructed,which was transfected into CHO cells for expression,and human anti-periostin antibody was successfully obtained.ELISA and Western blot results showed that the humanized antibody had good anti-periostin activities and binding affinity.Conclu-sion:In this study,anti-periostin humanized monoclonal antibody has been successfully prepared,which can specifically bind to peri-ostin proteins in vivo and have biological activity,providing scientific data for the precise treatment of retinal fibrosis,tissue and organ fibrosis,and malignant tumors.
8.Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy
Linghu KE-GANG ; Zhang TIAN ; Zhang GUANG-TAO ; Lv PENG ; Zhang WEN-JUN ; Zhao GUAN-DING ; Xiong SHI-HANG ; Ma QIU-SHUO ; Zhao MING-MING ; Chen MEIWAN ; Hu YUAN-JIA ; Zhang CHANG-SHENG ; Yu HUA
Journal of Pharmaceutical Analysis 2024;14(3):401-415
Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified.Deoxynyboquinone(DNQ)is a natural small molecule discovered from marine actinomycetes.The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1.DNQ exhibited signif-icant anti-inflammatory properties both in vitro and in vivo.The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α,β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine.DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway.Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation.The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry.DNQ triggered the ubiquitination and subsequent degra-dation of Keap1 by alkylation of the cysteine residue 489(Cys489)on Keap1-Kelch domain,ultimately enabling the activation of Nrf2.Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α,β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain,suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.
9.Effect of combination of pressure biofeedback therapy and Flexi-bar in sitting on chronic non-specific low back pain
Zhao WANG ; Fan JIA ; Ying ZHAO ; Fuguo XU ; Weiwei ZHU ; Hang LI ; Ming ZHANG
Chinese Journal of Rehabilitation Theory and Practice 2023;29(1):110-118
ObjectiveTo explore the immediate and short-term effects of pressure biofeedback therapy combined with Flexi-bar exercise in the sitting position on chronic non-specific low back pain (CNSLBP). MethodsFrom June to September, 2022, 27 CNSLBP students in Xuzhou Medical University and other universities around were randomly divided into pressure biofeedback unit (PBU) group (n = 9), Flexi-bar group (n = 9) and combined group (n = 9). On the basis of routine rehabilitation guidance, the PBU group accepted pressure biofeedback therapy, the Flexi-bar group accepted active vibration therapy, and the combined group accepted pressure biofeedback therapy and active vibration therapy, for three weeks. They were measured core stability with Stabilizer, lumbar joint repositioning error (LJRE) with iHandy, and bilateral transverse abdominis thickness and multifidus muscle cross-sectional area with ultrasonography; and assessed with Visual Analogue Scale for pain (VAS), Oswestry Disability Index (ODI) before and after treatment; and the core stability were measured immediately after the first treatment. ResultsThe indexes of core stability improved after the first treatment (|t| > 3.000, P < 0.05) in all groups, and improved the most in the combined group (F > 10.909, P < 0.001). All the indexes improved after three weeks of treatment (|t| > 2.604, P < 0.05), except for LJRE in PBU group; and they were the best in the combined group (|F| > 4.061, P < 0.05), except LJRE was not significantly different from the Flexi-bar group (P > 0.05). ConclusionPressure biofeedback therapy combined with Flexi-bar exercise in the sitting position can more effectively improve core stability and core muscles, proprioception, and pain for patients with CNSLBP.
10.Safety and feasibility of 120 min rapid infusion regimen of daratumumab in patients with multiple myeloma.
Tian Hang WANG ; Rui HAO ; Bao Nan XU ; Liang CHANG ; Zhao Bao LIU ; Jia Lin YAO ; Wen WANG ; Wen Jun XIE ; Wen qiang YAN ; Zhi Jian XIAO ; Lu Gui QIU ; Gang AN
Chinese Journal of Hematology 2023;44(8):696-699

Result Analysis
Print
Save
E-mail