1.In vitro anti-tumor effects and mechanisms of a novel c-KIT inhibitor PN17-1 on gastrointestinal stromal tumor GIST-882 cells
Ji-wei SHEN ; Shuang WU ; Jun LI ; Yun-peng ZHOU ; Ye CHEN ; Ju LIU
Acta Pharmaceutica Sinica 2025;60(2):379-387
In recent years, gastrointestinal stromal tumors (GIST) have increased incidence and mortality, and most GIST is caused by the activation mutation of the c-KIT gene. Therefore, c-KIT has become a promising therapeutic target of GIST. At present, the drugs approved for the treatment of GIST including imatinib, sunitinib, regorafenib and ripretinib, are mostly prone to developing resistance and accompanied by various degrees of adverse reactions. Therefore, there is an urgent need to develop new c-KIT inhibitors to solve the problem of resistance. In this study, we investigated the anti-tumor effect of a novel c-KIT inhibitor PN17-1 on gastrointestinal stromal tumor GIST-882 cells
2.Dynamic Monitoring and Correlation Analysis of General Body Indicators, Blood Glucose, and Blood Lipid in Obese Cynomolgus Monkeys
Yanye WEI ; Guo SHEN ; Pengfei ZHANG ; Songping SHI ; Jiahao HU ; Xuzhe ZHANG ; Huiyuan HUA ; Guanyang HUA ; Hongzheng LU ; Yong ZENG ; Feng JI ; Zhumei WEI
Laboratory Animal and Comparative Medicine 2025;45(1):30-36
ObjectiveThis study aims to investigate the dynamic changes in general body parameters, blood glucose, and blood lipid profiles in obese cynomolgus monkeys, exploring the correlations among these parameters and providing a reference for research on the obese cynomolgus monkey model. Methods30 normal male cynomolgus monkeys aged 5 - 17 years old (with body mass index < 35 kg/m² and glycated hemoglobin content < 4.50%) and 99 spontaneously obese male cynomolgus monkeys (with body mass index ≥35 kg/m² and glycated hemoglobin content < 4.50%) were selected. Over a period of three years, their abdominal circumference, skinfold thickness, body weight, body mass index, fasting blood glucose, glycated hemoglobin, and four blood lipid indicators were monitored. The correlations between each indicator were analyzed using repeated measurement ANOVA, simple linear regression, and multiple linear regression correlation analysis method. Results Compared to the control group, the obese group exhibited significantly higher levels of abdominal circumference, skinfold thickness, body weight, body mass index, and triglyceride (P<0.05). In the control group, skinfold thickness increased annually, while other indicators remained stable. Compared with the first year, the obese group showed significantly increased abdominal circumference, skinfold thickness, body weight, body mass index, triglyceride, and fasting blood glucose in the second year(P<0.05), with this increasing trend persisting in the third year (P<0.05). In the control group, the obesity incidence rates in the second and third years were 16.67% and 23.33%, respectively, while the prevalence of diabetes remained at 16.67%. In the obese group, the diabetes incidence rates were 29.29% and 44.44% in years 2 and 3, respectively. Among the 11-13 year age group, the incidence rates were 36.36% and 44.68%, while for the group older than 13 years, the rates were 28.13% and 51.35%. Correlation analysis revealed significant associations (P<0.05) between fasting blood glucose and age, abdominal circumference, skinfold thickness, body weight, and triglyceride in the diabetic monkeys. Conclusion Long-term obesity can lead to the increases in general physical indicators and fasting blood glucose levels in cynomolgus monkeys, and an increase in the incidence of diabetes. In diabetic cynomolgus monkeys caused by obesity, there is a high correlation between their fasting blood glucose and age, weight, abdominal circumference, skinfold thickness, and triglyceride levels, which is of some significance for predicting the occurrence of spontaneous diabetes.
3.Development and validation of a prediction score for subtype diagnosis of primary aldosteronism.
Ping LIU ; Wei ZHANG ; Jiao WANG ; Hongfei JI ; Haibin WANG ; Lin ZHAO ; Jinbo HU ; Hang SHEN ; Yi LI ; Chunhua SONG ; Feng GUO ; Xiaojun MA ; Qingzhu WANG ; Zhankui JIA ; Xuepei ZHANG ; Mingwei SHAO ; Yi SONG ; Xunjie FAN ; Yuanyuan LUO ; Fangyi WEI ; Xiaotong WANG ; Yanyan ZHAO ; Guijun QIN
Chinese Medical Journal 2025;138(23):3206-3208
4.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
5.Vascular Protection of Neferine on Attenuating Angiotensin II-Induced Blood Pressure Elevation by Integrated Network Pharmacology Analysis and RNA-Sequencing Approach.
A-Ling SHEN ; Xiu-Li ZHANG ; Zhi GUO ; Mei-Zhu WU ; Ying CHENG ; Da-Wei LIAN ; Chang-Geng FU ; Jun PENG ; Min YU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(8):694-706
OBJECTIVE:
To explore the functional roles and underlying mechanisms of neferine in the context of angiotensin II (Ang II)-induced hypertension and vascular dysfunction.
METHODS:
Male mice were infused with Ang II to induce hypertension and randomly divided into treatment groups receiving neferine or a control vehicle based on baseline blood pressure using a random number table method. The hypertensive mouse model was constructed by infusing Ang II via a micro-osmotic pump (500 ng/kg per minute), and neferine (0.1, 1, or 10 mg/kg), valsartan (10 mg/kg), or double distilled water was administered intragastrically once daily for 6 weeks. A non-invasive blood pressure system, ultrasound, and hematoxylin and eosin staining were performed to assess blood pressure and vascular changes. RNA sequencing and network pharmacology were employed to identify differentially expressed transcripts (DETs) and pathways. Vascular ring tension assay was used to test vascular function. A7R5 cells were incubated with neferine for 24 h and then treated with Ang II to record the real-time Ca2+ concentration by confocal microscope. Immunohistochemistry (IHC) and Western blot were used to evaluate vasorelaxation, calcium, and the extracellular signal-regulated kinase (ERK)1/2 pathway.
RESULTS:
Neferine treatment effectively mitigated the elevation in blood pressure, pulse wave velocity, aortic thickening in the abdominal aorta of Ang II-infused mice (P<0.05). RNA sequencing and network pharmacology analysis identified 355 DETs that were significantly reversed by neferine treatment, along with 25 potential target genes, which were further enriched in multiple pathways and biological processes, such as ERK1 and ERK2 cascade regulation, calcium pathway, and vascular smooth muscle contraction. Further investigation revealed that neferine treatment enhanced vasorelaxation and reduced Ca2+-dependent contraction of abdominal aortic rings, independent of endothelium function (P<0.05). The underlying mechanisms were mediated, at least in part, via suppression of receptor-operated channels, store-operated channels, or voltage-operated calcium channels. Neferine pre-treatment demonstrated a reduction in intracellular Ca2+ release in Ang II stimulated A7R5 cells. IHC staining and Western blot confirmed that neferine treatment effectively attenuated the upregulation of p-ERK1/2 both in vivo and in vitro, which was similar with treatment of ERK1/2 inhibitor PD98059 (P<0.05).
CONCLUSIONS
Neferine remarkably alleviates Ang II-induced elevation of blood pressure, vascular dysfunction, and pathological changes in the abdominal aorta. This beneficial effect is mediated by the modulation of multiple pathways, including calcium and ERK1/2 pathways.
Animals
;
Angiotensin II
;
Male
;
Benzylisoquinolines/therapeutic use*
;
Network Pharmacology
;
Blood Pressure/drug effects*
;
Sequence Analysis, RNA
;
Mice
;
Hypertension/chemically induced*
;
Mice, Inbred C57BL
;
Calcium/metabolism*
6.Polymer-assisted PD-L1 degradation and targeted photodynamic therapy synergize to suppress immunodeficient tumors.
Changyong GUO ; Shipeng HE ; Huaxing SHEN ; Wei CONG ; Jinqiu LI ; Yajing JI ; Wenjing HUANG ; Fei GAO ; Honggang HU
Acta Pharmaceutica Sinica B 2025;15(7):3805-3818
Checkpoint blockade immunotherapy has emerged as a transformative approach in cancer treatment by activating tumor-infiltrating T cells. However, the efficacy of PD-L1 blockade is restricted in "cold" tumors, which are characterized by low immunogenicity, presenting a challenge to immunotherapy. This study introduces an innovative strategy, utilizing cathepsin-cleavable N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-assisted combined photodynamic therapy (PDT) and PD-L1 degradation for the first time, effectively treating T cell-deficient tumors. The degradable main-chain polymer, conjugated with photosensitizer porphyrin, facilitates the accumulation of reactive oxygen species (ROS), triggering immunogenic cell death (ICD) and promoting cytotoxic T lymphocytes (CTLs) infiltration into tumors. Multivalent peptide antagonists of PD-L1 promote PD-L1 degradation in lysosomes through receptor crosslinking, overcoming the adaptive cycling of PD-L1 to the tumor cell surface. These findings demonstrate that polymer-assisted PDT and PD-L1 crosslinking degradation represent a potential novel strategy for anti-tumor immunotherapy, providing valuable tools for expanding immunotherapy applications in immunosuppressive cancers.
7.PARylation promotes acute kidney injury via RACK1 dimerization-mediated HIF-1α degradation.
Xiangyu LI ; Xiaoyu SHEN ; Xinfei MAO ; Yuqing WANG ; Yuhang DONG ; Shuai SUN ; Mengmeng ZHANG ; Jie WEI ; Jianan WANG ; Chao LI ; Minglu JI ; Xiaowei HU ; Xinyu CHEN ; Juan JIN ; Jiagen WEN ; Yujie LIU ; Mingfei WU ; Jutao YU ; Xiaoming MENG
Acta Pharmaceutica Sinica B 2025;15(9):4673-4691
Poly(ADP-ribosyl)ation (PARylation) is a specific form of post-translational modification (PTM) predominantly triggered by the activation of poly-ADP-ribose polymerase 1 (PARP1). However, the role and mechanism of PARylation in the advancement of acute kidney injury (AKI) remain undetermined. Here, we demonstrated the significant upregulation of PARP1 and its associated PARylation in murine models of AKI, consistent with renal biopsy findings in patients with AKI. This elevation in PARP1 expression might be attributed to trimethylation of histone H3 lysine 4 (H3K4me3). Furthermore, a reduction in PARylation levels mitigated renal dysfunction in the AKI mouse models. Mechanistically, liquid chromatography-mass spectrometry indicated that PARylation mainly occurred in receptor for activated C kinase 1 (RACK1), thereby facilitating its subsequent phosphorylation. Moreover, the phosphorylation of RACK1 enhanced its dimerization and accelerated the ubiquitination-mediated hypoxia inducible factor-1α (HIF-1α) degradation, thereby exacerbating kidney injury. Additionally, we identified a PARP1 proteolysis-targeting chimera (PROTAC), A19, as a PARP1 degrader that demonstrated superior protective effects against renal injury compared with PJ34, a previously identified PARP1 inhibitor. Collectively, both genetic and drug-based inhibition of PARylation mitigated kidney injury, indicating that the PARylated RACK1/HIF-1α axis could be a promising therapeutic target for AKI treatment.
8.A Novel Mouse Model Unveils Protein Deficiency in Truncated CDKL5 Mutations.
Xue FENG ; Zi-Ai ZHU ; Hong-Tao WANG ; Hui-Wen ZHOU ; Ji-Wei LIU ; Ya SHEN ; Yu-Xian ZHANG ; Zhi-Qi XIONG
Neuroscience Bulletin 2025;41(5):805-820
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) cause a severe neurodevelopmental disorder, yet the impact of truncating mutations remains unclear. Here, we introduce the Cdkl5492stop mouse model, mimicking C-terminal truncating mutations in patients. 492stop/Y mice exhibit altered dendritic spine morphology and spontaneous seizure-like behaviors, alongside other behavioral deficits. After creating cell lines with various Cdkl5 truncating mutations, we found that these mutations are regulated by the nonsense-mediated RNA decay pathway. Most truncating mutations result in CDKL5 protein loss, leading to multiple disease phenotypes, and offering new insights into the pathogenesis of CDKL5 disorder.
Animals
;
Disease Models, Animal
;
Mice
;
Protein Serine-Threonine Kinases/deficiency*
;
Mutation/genetics*
;
Epileptic Syndromes/genetics*
;
Humans
;
Dendritic Spines/pathology*
;
Spasms, Infantile/genetics*
;
Male
;
Seizures/genetics*
;
Mice, Inbred C57BL
9.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
10.Independent and Interactive Effects of Air Pollutants, Meteorological Factors, and Green Space on Tuberculosis Incidence in Shanghai.
Qi YE ; Jing CHEN ; Ya Ting JI ; Xiao Yu LU ; Jia le DENG ; Nan LI ; Wei WEI ; Ren Jie HOU ; Zhi Yuan LI ; Jian Bang XIANG ; Xu GAO ; Xin SHEN ; Chong Guang YANG
Biomedical and Environmental Sciences 2025;38(7):792-809
OBJECTIVE:
To assess the independent and combined effects of air pollutants, meteorological factors, and greenspace exposure on new tuberculosis (TB) cases.
METHODS:
TB case data from Shanghai (2013-2018) were obtained from the Shanghai Center for Disease Control and Prevention. Environmental data on air pollutants, meteorological variables, and greenspace exposure were obtained from the National Tibetan Plateau Data Center. We employed a distributed-lag nonlinear model to assess the effects of these environmental factors on TB cases.
RESULTS:
Increased TB risk was linked to PM 2.5, PM 10, and rainfall, whereas NO 2, SO 2, and air pressure were associated with a reduced risk. Specifically, the strongest cumulative effects occurred at various lags: PM 2.5 ( RR = 1.166, 95% CI: 1.026-1.325) at 0-19 weeks; PM 10 ( RR = 1.167, 95% CI: 1.028-1.324) at 0-18 weeks; NO 2 ( RR = 0.968, 95% CI: 0.938-0.999) at 0-1 weeks; SO 2 ( RR = 0.945, 95% CI: 0.894-0.999) at 0-2 weeks; air pressure ( RR = 0.604, 95% CI: 0.447-0.816) at 0-8 weeks; and rainfall ( RR = 1.404, 95% CI: 1.076-1.833) at 0-22 weeks. Green space exposure did not significantly impact TB cases. Additionally, low temperatures amplified the effect of PM 2.5 on TB.
CONCLUSION
Exposure to PM 2.5, PM 10, and rainfall increased the risk of TB, highlighting the need to address air pollutants for the prevention of TB in Shanghai.
China/epidemiology*
;
Humans
;
Air Pollutants/analysis*
;
Tuberculosis/epidemiology*
;
Incidence
;
Meteorological Concepts
;
Particulate Matter/adverse effects*
;
Environmental Exposure
;
Male
;
Female
;
Adult
;
Air Pollution
;
Middle Aged

Result Analysis
Print
Save
E-mail