1.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
2.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
3.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
4.Research progress on NCOA4-mediated ferritinophagy and related diseases.
Chen JIA ; Hong-Ji LIN ; Fang CUI ; Rui LU ; Yi-Ting ZHANG ; Zhi-Qin PENG ; Min SHI
Acta Physiologica Sinica 2025;77(1):194-208
Nuclear receptor co-activator 4 (NCOA4) acts as a selective cargo receptor that binds to ferritin, a cytoplasmic iron storage complex. By mediating ferritinophagy, NCOA4 regulates iron metabolism and releases free iron in the body, thus playing a crucial role in a variety of biological processes, including growth, development, and metabolism. Recent studies have shown that NCOA4-mediated ferritinophagy is closely associated with the occurrence and development of iron metabolism-related diseases, such as liver fibrosis, renal cell carcinoma, and neurodegenerative diseases. In addition, a number of clinical drugs have been identified to modulate NCOA4-mediated ferritinophagy, significantly affecting disease progression and treatment efficacy. This paper aims to review the current research progress on the role of NCOA4-mediated ferritinophagy in related diseases, in order to provide new ideas for targeted clinical therapy.
Humans
;
Nuclear Receptor Coactivators/physiology*
;
Ferritins/metabolism*
;
Animals
;
Neurodegenerative Diseases/metabolism*
;
Iron/metabolism*
;
Autophagy/physiology*
;
Liver Cirrhosis/metabolism*
;
Carcinoma, Renal Cell/metabolism*
;
Kidney Neoplasms/physiopathology*
5.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
6.The expression of CD24 antigen in multiple myeloma patients and its predictive value after induction therapy
Mengru LIU ; Bin CHU ; Yuan CHEN ; Mengzhen WANG ; Minqiu LU ; Shan GAO ; Lei SHI ; Qiuqing XIANG ; Lijuan FANG ; Qi YAN ; Na JI ; Kai SUN ; Li BAO
Chinese Journal of Laboratory Medicine 2024;47(10):1178-1185
Objective:This study analyzed the expression of CD24 antigen on bone marrow plasma cells (BMPC) of patients with multiple myeloma (MM) and the predictive value of induction therapy.Methods:This clinical observational study utilized 258 MM patients samples treated at the Hematology Department of Beijing Jishuitan Hospital who met the inclusion criteria in the Department of Hematology, Capital Medical University, from August 12th, 2022 to February 1st, 2024. According to the different stages of the disease, patients were divided into three groups: 78 cases of Newly Diagnosed Multiple Myeloma(NDMM) (42 males and 36 females, aged 62±11), 56 cases of the relapse refractory group (34 males and 22 females, aged 64±9), and 124 cases of the disease remission group (68 males and 56 females, aged 62±10). Multiparameter flow cytometry (MFC) was used to detect the expression level of CD24 antigen on BMPC and the relationship between CD24 and MM disease status. The clinical data and test results of 78 NDMM patients at initial diagnosis were retrospectively analyzed, including gender, age, MFC detection of the positive expression rate of antigens (CD19, CD20, CD24, CD27, CD56), the results of efficacy evaluation after induction therapy, ISS staging, R-ISS staging, blood hemoglobin, β2-microglobulin, human serum albumin, serum creatinine, lactate dehydrogenas, correction of calcium, BMPC ratio, and the results of FISH. The patients were divided into a deep remission group [including complete remission (CR) and very good partial remission (VGPR)] with 43 cases and a non-deep remission group (non CR and VGPR) with 17 cases according to the difference of antigen positive expression rate after induction therapy. The differences of antigen expression on BMPC between the two groups were compared. Binary logistic regression was used to analyze the relationship between the expression of each antigen and the efficacy after induction therapy in patients, and the results showed that CD24 was more correlated with the achievement of deep remission after induction therapy than other antigens. Therefore, taking the positive expression rate of CD24 in NDMM patients at the initial diagnosis and deep remission after induction therapy as the research objects, the predictive value of CD24 for NDMM patients reaching deep remission after induction therapy was analyzed by using receiver operating characteristic curve (ROC), and the optimal cutoff value was obtained. NDMM was divided into two groups according to the cut-off value, and the differences between the two groups in clinical baseline data and prognostic indicators were compared.Results:The positive rates of plasma cell CD24 expression in the NDMM group, the relapse refractory group and the disease remission group were 2.18 (95% CI 0.08-81.85)%, 3.81 (95% CI 0.10-64.56)%, 8.74 (95% CI 0.79-95.55)% respectively. Compared with the disease remission group, the NDMM and relapse refractory group was lower ( Z=-7.889, -5.282, respectively, P<0.001). Univariate analysis showed that there was a significant difference in the positive expression rate of CD24 at initial diagnosis between the deep remission group and the non-deep remission group ( Z=-3.265, P<0.001), while there was no significant difference in CD19 ( Z=-0.271, P=0.787), CD20 ( Z=-0.205, P=0.837), CD27 ( Z=-0.582, P=0.560), and CD56 ( Z=-0.328, P=0.743) between the two groups. Binary logistic regression analysis showed that compared with other antigens [CD19 ( OR=1.045, 95% CI 0.975-1.120, P=0.217), CD20 ( OR=1.000, 95% CI 0.971-1.030, P=0.976), CD27 ( OR=0.997, 95% CI 0.977-1.016, P=0.734), CD56 ( OR=1.006, 95% CI 0.990-1.006, P=0.449)], the expression of CD24 ( OR=0.423, 95% CI 0.990-1.006, P=0.449) on BMPC in NDMM patients was most closely related to the achievement of deep remission was achieved after induction therapy. The lower the proportion of CD24 at the initial diagnosis was, the lower the probability of achieving deep remission after induction therapy was. The area under the curve (AUC) of CD24 in predicting deep remission after induction therapy was 0.772 (95% CI 0.655-0.889, P=0.001), with a sensitivity of 60.50%, a specificity of 85.00%, and the optimal critical value was 2.21%. Compared with the group with plasma CD24 positive rate>2.21%, the group with plasma CD24 positive rate<2.21% had a higher proportion of male (39.47%vs 65.00%, χ2=5.092, P=0.024), ISS stagingⅢ (41.67% vs 58.33%, χ2=6.175, P=0.046), β2 microglobulin (3.19 mg/L vs 4.14 mg/L, Z=-2.257, P=0.024), and BMPC [(8.672±1.827)% vs (19.530±3.188)%, t=-2.963, P=0.004] detected by MFC, and the differences were statistically significant. Conclusions:The low positive rate of plasma cell CD24 is closely related to the higher tumor burden and the worse disease status of MM patients. In addition, the positive expression rate of CD24 is at initial diagnosis can predict the efficacy achieved after induction therapy, and the lower positive rate of CD24 is, the worse the efficacy achieved after induction therapy. At the same time, MFC detection of CD24 is convenient and efficient in the evaluation and prediction of MM.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Development of new multifunctional surgical instrument kit for disaster relief
Mei BIAN ; Wen SHI ; Xiao-Lan GUO ; Run-Fang JI ; Yu-Juan PENG ; Xin YANG
Chinese Medical Equipment Journal 2024;45(2):113-117
Objective To develop a portable,modular and multifunctional surgical instrument kit with intelligent recognition for disaster relief.Methods The surgical instrument kit had three variations for thorax and abdomen,limbs and cranium and brain,which was composed of a lip,partitions and drawers.A traceability code was pasted on each surgical instrument kit,and each instrument in the kit was equipped with a RF chip.Results The surgical instrument kit made the average time for operating table preparation and instrument arrangement and that for instrument counting both shortened effectively,and thus the efficiency of medical staffs were enhanced greatly.Conclusion The surgical instrument kit gains advantages in rational configuration and easy operation,and can be used for surgical operation in disaster conditions.[Chinese Medical Equipment Journal,2024,45(2):113-117]
9.Study on the Relationship between Integrin 2A and Drug Resistance in Chronic Myeloid Leukemia.
Nai-Qin ZHAO ; Cheng-Yun PAN ; Tian-Zhuo ZHANG ; Ping LIU ; Tian-Zhen HU ; Qin SHANG ; Hong LUO ; Qin FANG ; Ji-Shi WANG
Journal of Experimental Hematology 2023;31(1):8-16
OBJECTIVE:
To explore the expression pattern and clinical significance of Integral membrane protein 2A(ITM2A) in drug resistant patients with chronic myeloid leukemia (CML).
METHODS:
The expression of ITM2A in CML was evaluated by qRT-PCR, Western blot and immunocytochemistry. In order to understand the possible biological effects of ITM2A, apoptosis, cell cycle and myeloid differentiation antigen expression of CML cells were detected by flow cytometry after over-expression of ITM2A. The nuderlying molecular mechanism of its biological effect was explored.
RESULTS:
The expression of ITM2A in bone marrow of CML resistant patients was significantly lower than that of sensitive patients and healthy donors(P<0.05). The CML resistant strain cell K562R was successfully constructed in vitro. The expression of ITM2A in the resistant strain was significantly lower than that in the sensitive strain(P<0.05). Overexpression of ITM2A in K562R cells increased the sensitivity of K562R cells to imatinib and blocked the cell cycle in G2 phase(P<0.05), but did not affect myeloid differentiation. Mechanistically, up-regulation of ITM2A reduced phosphorylation in ERK signaling (P<0.05).
CONCLUSION
The expression of ITM2A was low in patients with drug resistance of CML, and the low expression of ITM2A may be the key factor of imatinib resistance in CML.
Humans
;
Antineoplastic Agents/pharmacology*
;
Apoptosis
;
Drug Resistance, Neoplasm
;
Imatinib Mesylate/therapeutic use*
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Signal Transduction
10.Treatment Outcomes in COVID-19 Patients with Brucellosis: Case Series in Heilongjiang and Systematic Review of Literature.
Man Li YANG ; Jing Ya WANG ; Xing Yu ZONG ; Li GUAN ; Hui Zhen LI ; Yi Bai XIONG ; Yu Qin LIU ; Ting LI ; Xin Yu JI ; Xi Yu SHANG ; Hui Fang ZHANG ; Yang GUO ; Zhao Yuan GONG ; Lei ZHANG ; Lin TONG ; Ren Bo CHEN ; Yi Pin FAN ; Jin QIN ; Fang WANG ; Gang LIN ; Nan Nan SHI ; Yan Ping WANG ; Yan MA
Biomedical and Environmental Sciences 2023;36(10):930-939
OBJECTIVE:
Clinical characteristics and outcome in COVID-19 with brucellosis patients has not been well demonstrated, we tried to analyze clinical outcome in local and literature COVID-19 cases with brucellosis before and after recovery.
METHODS:
We retrospectively collected hospitalization data of comorbid patients and prospectively followed up after discharge in Heilongjiang Infectious Disease Hospital from January 15, 2020 to April 29, 2022. Demographics, epidemiological, clinical symptoms, radiological and laboratory data, treatment medicines and outcomes, and follow up were analyzed, and findings of a systematic review were demonstrated.
RESULTS:
A total of four COVID-19 with brucellosis patients were included. One patient had active brucellosis before covid and 3 patients had nonactive brucellosis before brucellosis. The median age was 54.5 years, and all were males (100.0%). Two cases (50.0%) were moderate, and one was mild and asymptomatic, respectively. Three cases (75.0%) had at least one comorbidity (brucellosis excluded). All 4 patients were found in COVID-19 nucleic acid screening. Case C and D had only headache and fever on admission, respectively. Four cases were treated with Traditional Chinese medicine, western medicines for three cases, no adverse reaction occurred during hospitalization. All patients were cured and discharged. Moreover, one case (25.0%) had still active brucellosis without re-positive COVID-19, and other three cases (75.0%) have no symptoms of discomfort except one case fell fatigue and anxious during the follow-up period after recovery. Conducting the literature review, two similar cases have been reported in two case reports, and were both recovered, whereas, no data of follow up after recovery.
CONCLUSION
These cases indicate that COVID-19 patients with brucellosis had favorable outcome before and after recovery. More clinical studies should be conducted to confirm our findings.
Female
;
Humans
;
Male
;
Middle Aged
;
Brucellosis
;
COVID-19
;
Retrospective Studies
;
SARS-CoV-2
;
Treatment Outcome
;
Case Reports as Topic

Result Analysis
Print
Save
E-mail