1.Premature Aging Prevention and Treatment Guided by Essence-Qi-Spirit Theory of Qiluo Doctrine: A Review
Chuanyuan JI ; Hongrong LI ; Jiameng HAO ; Dandong WANG ; Yucong MA ; Kun MA ; Cong WEI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):279-285
The theoretical basis of premature aging originates from The Yellow Emperor's Inner Classic. The etiology of premature aging is complex, and the disease mechanism is based on deficiency. The treatment for premature aging is based on tonicity. The essence-Qi-spirit theory of Qiluo doctrine summarizes that "essence is the origin of life, Qi is the driving force of life, and spirit is the embodiment of life", which is the law of life. The theory puts forward the core disease mechanism of aging, which states that "deficiency of kidney essence is the root of aging, deficiency of primordial Qi is the key to aging, impairment of soma and spirit is the manifestation of aging". The theory also proposes the treatment of "tonifying kidney and supplementing essence, harmonizing Yin and Yang, warming and supporting primordial Qi, and nourishing soma and spirit" and the representative anti-aging drugs. The article unfolds from the perspective of the concepts of natural life span, premature senility before fifty, decline, and aging and also explains the origins and connotations of premature aging. The article explains the disease mechanism of premature aging under the guidance of the essence-Qi-spirit theory of Qiluo doctrine, which is "early deprivation of kidney essence, deficiency of primordial Qi, accumulation of deficiencies into impairment, and decline and impairment of soma and spirit", summarizes the progress of modern medical research on the treatment of premature aging and representative drugs, and finds that Bazi Bushen capsules have a precise therapeutic effect on the overall premature aging, systematic functional decline, and related diseases. The study provides theoretical basis and new ideas to solve the problems of premature aging and geriatric diseases.
2.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
3.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
4.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
5.A dual-targeting peptide-drug conjugate based on CXCR4 and FOLR1 inhibits triple-negative breast cancer.
Kun WANG ; Cong WANG ; Hange YANG ; Gong CHEN ; Ke WANG ; Peihong JI ; Xudong SUN ; Xuegong FAN ; Jie MA ; Zhencun CUI ; Xingkai WANG ; Hao TIAN ; Dengfu WU ; Lu WANG ; Zhimin WANG ; Jiangyan LIU ; Juan YI ; Kuan HU ; Hailong ZHANG ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):4995-5009
Triple-negative breast cancer is therapeutically challenging due to the low expression of tumor markers and 'cold' tumor immunosuppressive microenvironment. Here, we present a dual-targeting peptide-drug conjugate (PDC) for tumor inhibition. Our PDC efficiently and selectively delivers cytotoxic Monomethyl Auristatin E (MMAE) into tumor cells via C-X-C chemokine receptor type 4 (CXCR4) and folate receptor 1 (FOLR1) for synergistic inhibition of growth and metastasis. Our results show that the dual-targeting PDC has potent antitumor activity in cultured human cells and several murine transplanted tumor models without apparent toxicity. The combination of dual-targeting PDC and radiotherapy modulates the tumor immunosuppressive microenvironment by increasing CD8+ T cell infiltration and attenuating the proportion of myeloid-derived suppressor and regulatory T cells. Therefore, our dual-targeting PDC represents a promising new strategy for cancer therapy that rebalances the immune system and promotes tumor regression.
6.Astragaloside IV delayed the epithelial-mesenchymal transition in peritoneal fibrosis by inhibiting the activation of EGFR and PI3K-AKT pathways.
Ying HUANG ; Chen-Ling CHU ; Wen-Hui QIU ; Jia-Yi CHEN ; Lu-Xi CAO ; Shui-Yu JI ; Bin ZHU ; Guo-Kun WANG ; Quan-Quan SHEN
Journal of Integrative Medicine 2025;23(6):694-705
OBJECTIVE:
Peritoneal fibrosis (PF) is an adverse event that occurs during long-term peritoneal dialysis, significantly impairing treatment efficiency and adversely affecting patient outcomes. Astragaloside IV (AS-IV), a principal active component derived from Astragalus membranaceus (Fisch.) Bunge, has exhibited anti-inflammatory and antifibrotic effects in various settings. This study aims to investigate the potential therapeutic efficacy and mechanism of AS-IV in the treatment of PF.
METHODS:
The PF mouse model was established by intraperitoneal injection of 4.25% peritoneal dialysis fluid (100 mL/kg). The epithelial-mesenchymal transition (EMT) of HMrSV5 cells was induced by the addition of 10 ng/mL transforming growth factor β (TGF-β). The differentially expressed genes in HMrSV5 cells treated with AS-IV were screened using transcriptome sequencing analysis. The potential targets of AS-IV were screened using network pharmacology and analyzed using molecular docking and molecular dynamics simulations.
RESULTS:
Administration of AS-IV at doses of 20, 40, or 80 mg/kg effectively mitigated the increase in peritoneal thickness and the development of fibrosis in mice with PF. The expression of the fibrosis marker α-smooth muscle actin in the peritoneum was significantly decreased in AS-IV-treated mice. The treatment of AS-IV (10, 20, and 40 μmol/L) significantly delayed the EMT of HMrSV5 cells induced by TGF-β, as demonstrated by the decreased number of 5-ethynyl-2'-deoxyuridine-positive cells, reduced migrated area, and decreased expression of fibrosis markers. A total of 460 differentially expressed genes were detected in AS-IV-treated HMrSV5 cells through transcriptome sequencing, with notable enrichment in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT serine/threonine kinase 1 (AKT) signaling pathway. The reduced levels of phosphorylated PI3K (p-PI3K) and p-AKT were detected in HMrSV5 cells with AS-IV treatment. Epidermal growth factor receptor (EGFR) was predicted as a direct target of AS-IV, exhibiting strong hydrogen bond interactions. The activation of the PI3K-AKT pathway by the compound 740Y-P, and the activation of the EGFR pathway by NSC 228155 each partially counteracted the inhibitory effect of AS-IV on the EMT of HMrSV5 cells.
CONCLUSION
AS-IV delayed the EMT process in peritoneal mesothelial cells and slowed the progression of PF, potentially serving as a therapeutic agent for the early prevention and treatment of PF. Please cite this article as: Huang Y, Chu CL, Qiu WH, Chen JY, Cao LX, Ji SY, Zhu B, Wang GK, Shen QQ. Astragaloside IV delayed the epithelial-mesenchymal transition in peritoneal fibrosis by inhibiting the activation of EGFR and PI3K-AKT pathways. J Integr Med. 2025; 23(6):694-705.
Epithelial-Mesenchymal Transition/drug effects*
;
Animals
;
Saponins/pharmacology*
;
Triterpenes/pharmacology*
;
Mice
;
Peritoneal Fibrosis/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
ErbB Receptors/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Signal Transduction/drug effects*
;
Male
;
Humans
;
Molecular Docking Simulation
;
Cell Line
;
Mice, Inbred C57BL
7.The factors affecting pathological complete response of triple negative breast cancer patients after neoadjuvant chemotherapy and the construction of related model
Liu YANG ; Fu-Qing JI ; Ming-Kun ZHANG ; Zhe WANG ; Ju-Liang ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(8):855-860
Objective To analyze the factors affecting pathological complete response(pCR)of triple-negative breast cancer(TNBC)patients after neoadjuvant chemotherapy,and construct a nomogram to forecast the pCR rate.Methods The clinical and pathological data of 348 TNBC patients who received neoadjuvant chemotherapy in the Air Force Medical University-Affiliated Xijing Hospital from May 2018 to May 2021 were collected and set as modeling set.The clinical and pathological data of 69 TNBC patients who received neoadjuvant chemotherapy in the Xi'an No.3 Hospital from May 2018 to May 2021 were collected and set as validation set.The clinical and pathological characteristics were compared between the modeling set and the validation set.In the modeling set,the independent risk factors of pCR in TNBC patients after neoadjuvant chemotherapy were screened by LASSO regression model analysis,and the nomogram model was constructed.Internal validation of the model was conducted using Bootstrap method,and the discrimination of the model was assessed by receiver operating characteristic(ROC)curve.The accuracy of the model was evaluated by the calibration curve and the clinical benefits and application value of the model were evaluated by clinical decision curve analysis(DCA).Results There were significant differences in surgical method and T stage between the patients in modeling set and validation set(P<0.05).The results of analysis of LASSO regression model showed that T stage,N stage,the use of platinum drugs and clinical efficacy evaluation were independent risk factors of pCR in TNBC patients after neoadjuvant chemotherapy(P<0.05).Based on the above variables,the nomogram models were constructed.In modeling set,area under curve(AUC)was 0.811(95%CI 0.763-0.859);in validation set,AUC was 0.801(95%CI 0.727-0.928).The Bootstrap method showed the C-index for internal validation was 0.79,indicating the model has good discrimination in both the modeling and validation sets.The calibration curve analysis showed that model predicted pCR rates had a good consistency with the actual observed values,and the DCA showed that model can bring clinical benefit.Conclusion The nomogram can accurately predict the pCR rates of TNBC patients after neoadjuvant chemotherapy and provide scientific basis for clinical diagnosis and treatment.
8.HUVEC-Based OGD/R Injury Model to Study the Effect of Danggui-Chuanxiong Herb Pair Medicine on the Main Pharmacological Components on VEGF-PI3K-AKT/NF-κB Signaling Pathway
Qiuru JI ; Wenjuan NI ; Xiaoyan WANG ; Shuqi ZHANG ; Yali WU ; Lu NIU ; Kun LI ; Weixia LI ; Jinfa TANG
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(3):691-703
Objective To study the effects of Danggui-Chuanxiong herb pair medicine on vasoactive substances,adhesion factors,inflammatory factors,and VEGF-PI3K-AKT/NF-κB signaling pathways,in order to elucidate the mechanism of Danggui-Chuanxiong herb pair on the treatment of ischemic stroke(IS).Methods The oxygen glucose deprivation/reoxygenation(OGD/R)model of human umbilical vein endothelial cells(HUVEC)was constructed,and the cell viability was detected by cell proliferation kit(CCK-8 method)to explore the optimal modeling time of seven components;The release of lactate dehydrogenase(LDH)was detected by cytotoxicity kit;The expression of related cytokines was detected by enzyme-linked immunosorbent assay(ELISA);The mRNA expression of key proteins in the signaling pathway was detected by reverse transcription-polymerase chain reaction(RT-PCR).Results Reoxygenation after 6 h of oxygen-glucose deprivation of HUVEC is the best modeling time.High-dose chlorogenic acid group,ferulic acid group,senkyunolide H,low-dose and medium-dose butylidenephthalide group,medium-dose and high-dose senkyunolide A and ligustilide groups significantly decreased LDH leakage rate(P<0.05,P<0.01);The expression of IL-6 in the cells of the partial dose group of chlorogenic acid,caffeic acid,butenylphthalide,senkyunolide H and senkyunolide A was significantly increased,the expression of IL-1 in the cells of the partial dose group of chlorogenic acid,ferulic acid and senkyunolide A was significantly decreased,the expression of VEGF,ICAM-1 and VCAM-1 in the cells of the partial dose group of chlorogenic acid,ferulic acid and senkyunolide H was significantly decreased,the expression of NF-κB in the cells of the partial dose group of chlorogenic acid,ferulic acid,senkyunolide H and ligustilide was significantly decreased,the expression of PAI-1 in the cells of ferulic acid and senkyunolide H partial dose group decreased significantly(P<0.05,P<0.01);The mRNA relative expression levels of ERK,VEGF,NF-κB,VEGFR2 and MMP9 were significantly down-regulated in the cells of chlorogenic acid,ferulic acid,caffeic acid,butylidenephthalide and senkyunolide A partial dose group,while the mRNA relative expression levels of AKT were significantly up-regulated in the cells of senkyunolide H and senkyunolide A partial dose groups(P<0.05,P<0.01).Conclusion The medicinal components of Danggui-Chuanxiong herb pair may play a role in IS by inhibiting the mRNA expression of adhesion factor,inflammatory factor and key protein of VEGF-PI3K-AKT/NF-κB signaling pathway in HUVEC.
9.In vitro activity of β-lactamase inhibitors combined with different β-lac-tam antibiotics against multidrug-resistant Mycobacterium tuberculosis clinical strains
Jie SHI ; Dan-Wei ZHENG ; Ji-Ying XU ; Xiao-Guang MA ; Ru-Yue SU ; Yan-Kun ZHU ; Shao-Hua WANG ; Wen-Jing CHANG ; Ding-Yong SUN
Chinese Journal of Infection Control 2024;23(9):1091-1097
Objective To evaluate the in vitro effect of combinations of 5 β-lactam antibiotics with different β-lac-tamase inhibitors on the activity of multidrug-resistant Mycobacterium tuberculosis(MDR-TB),and identify the most effective combination of β-lactam antibiotics and β-lactamase inhibitors against MDR-TB.Methods MDR-TB strains collected in Henan Province Antimicrobial Resistance Surveillance Project in 2021 were selected.The mini-mum inhibitory concentrations(MIC)of 5 β-lactam antibiotics or combinations with different β-lactamase inhibitors on clinically isolated MDR-TB strains were measured by MIC detection method,and the blaC mutation of the strains was analyzed by polymerase chain reaction(PCR)and DNA sequencing.Results A total of 105 strains of MDR-TB were included in the analysis.MIC detection results showed that doripenem had the highest antibacterial activity against MDR-TB,with a MIC50 of 16 μg/mL.MIC values of most β-lactam antibiotics decreased significantly after combined with β-lactamase inhibitors.A total of 13.33%(n=14)strains had mutations in blaC gene,mainly 3 nu-cleotide substitution mutations,namely AGT333AGG,AAC638ACC and ATC786ATT.BlaC proteins Ser111 Arg and Asn213Thr enhanced the synergistic effect of clavulanic acid/sulbactam and meropenem on MDR-TB compared with synonymous single-nucleotide mutation.Conclusion The combination of doripenem and sulbactam has the strongest antibacterial activity against MDR-TB.Substitution mutations of BlaC protein Ser111 Arg and Asn213Thr enhances the sensitivity of MDR-TB to meropenem through the synergy with clavulanic acid/sulbactam.
10.Experimental study of the magnetic field correction factor of ionization chambers in MR-Linac
Yaping QI ; Jiahao LUO ; Yuan TIAN ; Zhipeng WANG ; Sunjun JIN ; Ji HUANG ; Xiaoyuan YANG ; Xin WANG ; Kun WANG
Chinese Journal of Radiation Oncology 2024;33(12):1119-1124
Objective:To measure the magnetic field correction factor of reference ionization chamber in a 1.5 T magnetic field and to explore the response of the ionization chamber among different angles between magnetic field and ionization chamber axis.Methods:A home-made magnetic compatible one-dimensional water tank was used to measure the response of PTW30013 and IBA FC65-G in 7 MV photon beam of Elekta Unity with and without magnetic field. The ionizing current was collected by PTW UNIDOS Tango electrometer. The effective measurement point of ionization chamber was positioned to the isocenter of MR-linac using electronic portal image device. The influence on water absorbed dose of reference point was obtained by Monte Carlo calculations.Results:The response of ionization chambers in strong magnetic field was related to the angle between chamber axis and magnetic field. The response of ionization chamber was significantly affected in perpendicular magnetic field with a deviation up to 4.54% compared to parallel magnetic field. The deviation between the magnetic field correction factors measured for parallel or reverse-parallel was 0.03%-0.24%. The magnetic field correction factors for PTW30013 and FC65-G measured in parallel magnetic field were 0.9934±0.0077 and 0.9990±0.0076, respectively.Conclusions:This study experimentally verifies that positioning the ionization chamber axis parallel to the magnetic field direction in MR-linac reference dosimetry can minimize the magnetic field impact. The determined magnetic field correction factor and uncertainty in 1.5 T magnetic field can provide necessary data for establishing an MR-linac reference dosimetry protocol.

Result Analysis
Print
Save
E-mail