1.Pharmaceutical care for a case of severe dermal toxicity induced by durvalumab
Liulian JI ; Zhengbi QIN ; Pengcheng LIU ; Xiaowen DENG ; Lili LIU ; Lijuan YAO ; Tingting LIU ; Pingchen GU
China Pharmacy 2026;37(1):88-91
OBJECTIVE To provide references for the accurate identification and management of immune-related cutaneous adverse events (irCAEs) caused by durvalumab, and ensuring safe clinical drug use. METHODS Clinical pharmacists participated in the diagnosis and treatment process of a patient with gallbladder cancer who developed irCAEs caused by durvalumab. The clinical pharmacists systematically reviewed the patient’s past medical history and medication history, and assisted physicians in assessing the association between adverse drug reactions and administered drugs. Meanwhile, the clinical pharmacists conducted a graded assessment of the adverse reaction, proposed recommendations such as discontinuing durvalumab and adjusting the administration regimen of glucocorticoids, assisted physicians in restarting immunotherapy, and carried out medication education and other pharmaceutical care. RESULTS The occurrence of irCAEs in this patient was “highly likely” related to durvalumab and was classified as severe. The physicians adopted the clinical pharmacist’s opinion, and after symptomatic treatment, the patient’s skin symptoms improved, and discharged with medication. After the completion of glucocorticoid therapy for the patient, the physician restarted immunotherapy with tislelizumab, and no related adverse reactions occurred again in the patient. CONCLUSIONS Durvalumab can cause irCAEs such as severe skin maculopapular rash. In clinical practice, it is crucial to promptly identify and discontinue suspicious drugs, immediately implement effective symptomatic treatment measures, and actively resume immunotherapy to ensure the continuity and safety of the patient’s treatment.
2.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
3.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
4.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
5.Construction of a Diagnostic Model for Traditional Chinese Medicine Syndromes of Chronic Cough Based on the Voting Ensemble Machine Learning Algorithm
Yichen BAI ; Suyang QIN ; Chongyun ZHOU ; Liqing SHI ; Kun JI ; Chuchu ZHANG ; Panfei LI ; Tangming CUI ; Haiyan LI
Journal of Traditional Chinese Medicine 2025;66(11):1119-1127
ObjectiveTo explore the construction of a machine learning model for the diagnosis of traditional Chinese medicine (TCM) syndromes in chronic cough and the optimization of this model using the Voting ensemble algorithm. MethodsA retrospective analysis was conducted using clinical data from 921 patients with chronic cough treated at the Respiratory Department of Dongfang Hospital, Beijing University of Chinese Medicine. After standardized processing, 84 clinical features were extracted to determine TCM syndrome types. A specialized dataset for TCM syndrome diagnosis in chronic cough was formed by selecting syndrome types with more than 50 cases. The synthetic minority over-sampling technique (SMOTE) was employed to balance the dataset. Four base models, logistic regression (LR), decision tree (dt), multilayer perceptron (MLP), and Bagging, were constructed and integrated using a hard voting strategy to form a Voting ensemble model. Model performance was evaluated using accuracy, recall, precision, F1-score, receiver operating characteristic (ROC) curve, area under the curve (AUC), and confusion matrix. ResultsAmong the 921 cases, six syndrome types had over 50 cases each, phlegm-heat obstructing the lung (294 cases), wind pathogen latent in the lung (103 cases), cold-phlegm obstructing the lung (102 cases), damp-heat stagnating in the lung (64 cases), lung yang deficiency (54 cases), and phlegm-damp obstructing the lung (53 cases), yielding a total of 670 cases in the specialized dataset. High-frequency symptoms among these patients included cough, expectoration, odor-induced cough, throat itchiness, itch-induced cough, and cough triggered by cold wind. Among the four base models, the MLP model showed the best diagnostic performance (test accuracy: 0.9104; AUC: 0.9828). Compared with the base models, the Voting ensemble model achieved superior performance with an accuracy of 0.9289 on the training set and 0.9253 on the test set, showing a minimal overfitting gap of 0.0036. It also achieved the highest AUC (0.9836) in the test set, outperforming all base models. The model exhi-bited especially strong diagnostic performance for damp-heat stagnating in the lung (AUC: 0.9984) and wind pathogen latent in the lung (AUC: 0.9970). ConclusionThe Voting ensemble algorithm effectively integrates the strengths of multiple machine learning models, resulting in an optimized diagnostic model for TCM syndromes in chronic cough with high accuracy and enhanced generalization ability.
6.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
7.Development and validation of a prediction score for subtype diagnosis of primary aldosteronism.
Ping LIU ; Wei ZHANG ; Jiao WANG ; Hongfei JI ; Haibin WANG ; Lin ZHAO ; Jinbo HU ; Hang SHEN ; Yi LI ; Chunhua SONG ; Feng GUO ; Xiaojun MA ; Qingzhu WANG ; Zhankui JIA ; Xuepei ZHANG ; Mingwei SHAO ; Yi SONG ; Xunjie FAN ; Yuanyuan LUO ; Fangyi WEI ; Xiaotong WANG ; Yanyan ZHAO ; Guijun QIN
Chinese Medical Journal 2025;138(23):3206-3208
8.Research progress on NCOA4-mediated ferritinophagy and related diseases.
Chen JIA ; Hong-Ji LIN ; Fang CUI ; Rui LU ; Yi-Ting ZHANG ; Zhi-Qin PENG ; Min SHI
Acta Physiologica Sinica 2025;77(1):194-208
Nuclear receptor co-activator 4 (NCOA4) acts as a selective cargo receptor that binds to ferritin, a cytoplasmic iron storage complex. By mediating ferritinophagy, NCOA4 regulates iron metabolism and releases free iron in the body, thus playing a crucial role in a variety of biological processes, including growth, development, and metabolism. Recent studies have shown that NCOA4-mediated ferritinophagy is closely associated with the occurrence and development of iron metabolism-related diseases, such as liver fibrosis, renal cell carcinoma, and neurodegenerative diseases. In addition, a number of clinical drugs have been identified to modulate NCOA4-mediated ferritinophagy, significantly affecting disease progression and treatment efficacy. This paper aims to review the current research progress on the role of NCOA4-mediated ferritinophagy in related diseases, in order to provide new ideas for targeted clinical therapy.
Humans
;
Nuclear Receptor Coactivators/physiology*
;
Ferritins/metabolism*
;
Animals
;
Neurodegenerative Diseases/metabolism*
;
Iron/metabolism*
;
Autophagy/physiology*
;
Liver Cirrhosis/metabolism*
;
Carcinoma, Renal Cell/metabolism*
;
Kidney Neoplasms/physiopathology*
9.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
10.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*

Result Analysis
Print
Save
E-mail