3.DRG2 levels in prostate cancer cell lines predict response to PARP inhibitor during docetaxel treatment
Jeong Min LEE ; Won Hyeok LEE ; Seung Hyeon CHO ; Jeong Woo PARK ; Hyuk Nam KWON ; Ji Hye KIM ; Sang Hun LEE ; Ji Hyung YOON ; Sungchan PARK ; Seong Cheol KIM
Investigative and Clinical Urology 2025;66(1):56-66
Purpose:
Developmentally regulated GTP-binding protein 2 (DRG2) regulates microtubule dynamics and G2/M arrest during docetaxel treatment. Poly ADP-ribose polymerase (PARP) acts as an important repair system for DNA damage caused by docetaxel treatment. This study investigated whether DRG2 expression affects response to PARP inhibitors (olaparib) using prostate cancer cell lines PC3, DU145, LNCaP-FGC, and LNCaP-LN3.
Materials and Methods:
The cell viability and DRG2 expression levels were assessed using colorimetric-based cell viability assay and western blot. Cells were transfected with DRG2 siRNA, and pcDNA6/V5-DRG2 was used to overexpress DRG2. Flow cytometry was applied for cell cycle assay and apoptosis analysis using the Annexing V cell death assay.
Results:
The expression of DRG2 was highest in LNCaP-LN3 and lowest in DU145 cells. Expressions of p53 in PC3, DU145, and the two LNCaP cell lines were null-type, high-expression, and medium-expression, respectively. In PC3 (DRG2 high, p53 null) cells, docetaxel increased G2/M arrest without apoptosis; however, subsequent treatment with olaparib promoted apoptosis. In DU145 and LNCaP-FGC (DRG2 low), docetaxel increased sub-G1 but not G2/M arrest and induced apoptosis, whereas olaparib had no additional effect. In LNCaP-LN3 (DRG2 high, p53 wild-type), docetaxel increased sub-G1 and G2/M arrest, furthermore olaparib enhanced cell death. Docetaxel and olaparib combination treatment had a slight effect on DRG2 knockdown PC3, but increased apoptosis in DRG2-overexpressed DU145 cells.
Conclusions
DRG2 and p53 expressions play an important role in prostate cancer cell lines treated with docetaxel, and DRG2 levels can predict the response to PARP inhibitors.
10.Simulating the Effect of Junction Setup Error in Dual-Isocentric Volumetric Modulated Arc Therapy for Pelvic Radiotherapy with a Large Target
Hojeong LEE ; Dong Woon KIM ; Ji Hyeon JOO ; Yongkan KI ; Wontaek KIM ; Dahl PARK ; Jiho NAM ; Dong Hyeon KIM ; Hosang JEON
Progress in Medical Physics 2024;35(2):52-57
Purpose:
The use of two adjacent radiation beams to treat a lesion that is larger than the maximum field of a machine may lead to higher or lower dose distribution at the junction than expected. Therefore, evaluation of the junction dose is crucial for radiotherapy. Volumetric modulated arc therapy (VMAT) can effectively protect surrounding normal tissues by implementing a complex dose distribution; therefore, two adjacent VMAT fields can effectively treat large lesions. However, VMAT can lead to significant errors in the junction dose between fields if setup errors occur due to its highly complex dose distributions.
Methods:
In this study, setup errors of ±1, ±3, and ±5 mm were assumed during radiotherapy for treating large lesions in the lower abdomen, and their effects on the treatment dose distribution and target coverage were analyzed using gamma pass rate (GP) and homogeneity index (HI). All studies were performed using a computational simulation method based on our radiation treatment planning software.
Results:
Consequently, when the setup error was more than ±3 mm, most GP values using a 3%/3-mm criterion decreased by <90%. GP was independent of the direction of the field gap (FG), whereas HI values were relatively more affected by negative values for FG.
Conclusions
Therefore, the size and direction of setup errors should be carefully managed when performing dual-isocentric VMATs for large targets.

Result Analysis
Print
Save
E-mail