1.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
2.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
3.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
4.Comparative Evaluation of Pre-Test Probability Models for Coronary Artery Disease with Assessment of a New Machine Learning-Based Model
Kyung-A KIM ; Min Soo KANG ; Byoung Geol CHOI ; Ji Hun AHN ; Wonho KIM ; Myung-Ae CHUNG
Yonsei Medical Journal 2025;66(4):211-217
Purpose:
This study aimed to validate pivotal pre-test probability (PTP)-coronary artery disease (CAD) models (CAD consortium model and IJC-CAD model).
Materials and Methods:
Traditional PTP models-CAD consortium models: two traditional PTP models were used under the CAD consortium framework, namely CAD1 and CAD2. Machine learning (ML)-based PTP models: two ML-based PTP models were derived from CAD1 and CAD2, and used to enhance predictive capabilities [ML-CAD2 and ML-IJC (IJC-CAD)]. The primary endpoint was obstructive CAD. The performance evaluation of these PTP models was conducted using receiver-operating characteristic analysis.
Results:
The study included 238 participants, among whom 157 individuals (65.9% of the total sample) had CAD. The IJC-CAD model demonstrated the highest performance with an area under the curve (AUC) of 0.860 [95% confidence interval (CI): 0.812– 0.909]. Following this, the ML-CAD2 model exhibited an AUC of 0.814 (95% CI: 0.758–0.870), CAD1 showed an AUC of 0.767 (95% CI: 0.705–0.830), and CAD2 had an AUC of 0.785 (95% CI: 0.726–0.845). Each of the PTP models was adjusted to have a CAD score cutoff that classified cases with a sensitivity of over 95%. The respective cutoff values were as follows: CAD1 and CAD2 >12, MLCAD2 >0.380, and IJC-CAD >0.367. All PTP models achieved a CAD sensitivity of over 95%. Similar to the AUC performance, the accuracy of the PTP models was highest for IJC-CAD, reaching 80.3%. The accuracy of ML-CAD2 was 77.7%, while that for CAD1 and CAD2 was 74.8% and 75.2%, respectively.
Conclusion
ML-CAD2 and IJC-CAD showed superior performance compared to traditional existing models (CAD1 and CAD2)
5.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
6.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
7.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
8.Comparative Evaluation of Pre-Test Probability Models for Coronary Artery Disease with Assessment of a New Machine Learning-Based Model
Kyung-A KIM ; Min Soo KANG ; Byoung Geol CHOI ; Ji Hun AHN ; Wonho KIM ; Myung-Ae CHUNG
Yonsei Medical Journal 2025;66(4):211-217
Purpose:
This study aimed to validate pivotal pre-test probability (PTP)-coronary artery disease (CAD) models (CAD consortium model and IJC-CAD model).
Materials and Methods:
Traditional PTP models-CAD consortium models: two traditional PTP models were used under the CAD consortium framework, namely CAD1 and CAD2. Machine learning (ML)-based PTP models: two ML-based PTP models were derived from CAD1 and CAD2, and used to enhance predictive capabilities [ML-CAD2 and ML-IJC (IJC-CAD)]. The primary endpoint was obstructive CAD. The performance evaluation of these PTP models was conducted using receiver-operating characteristic analysis.
Results:
The study included 238 participants, among whom 157 individuals (65.9% of the total sample) had CAD. The IJC-CAD model demonstrated the highest performance with an area under the curve (AUC) of 0.860 [95% confidence interval (CI): 0.812– 0.909]. Following this, the ML-CAD2 model exhibited an AUC of 0.814 (95% CI: 0.758–0.870), CAD1 showed an AUC of 0.767 (95% CI: 0.705–0.830), and CAD2 had an AUC of 0.785 (95% CI: 0.726–0.845). Each of the PTP models was adjusted to have a CAD score cutoff that classified cases with a sensitivity of over 95%. The respective cutoff values were as follows: CAD1 and CAD2 >12, MLCAD2 >0.380, and IJC-CAD >0.367. All PTP models achieved a CAD sensitivity of over 95%. Similar to the AUC performance, the accuracy of the PTP models was highest for IJC-CAD, reaching 80.3%. The accuracy of ML-CAD2 was 77.7%, while that for CAD1 and CAD2 was 74.8% and 75.2%, respectively.
Conclusion
ML-CAD2 and IJC-CAD showed superior performance compared to traditional existing models (CAD1 and CAD2)
9.Association between Breakfast Consumption Frequency and Chronic Inflammation in Korean Adult Males: Korea National Health and Nutrition Examination Survey 2016–2018
Eun Ji HAN ; Eun Ju PARK ; Sae Rom LEE ; Sang Yeoup LEE ; Young Hye CHO ; Young In LEE ; Jung In CHOI ; Ryuk Jun KWON ; Soo Min SON ; Yun Jin KIM ; Jeong Gyu LEE ; Yu Hyeon YI ; Young Jin TAK ; Seung Hun LEE ; Gyu Lee KIM ; Young Jin RA
Korean Journal of Family Medicine 2025;46(2):92-97
Background:
Skipping breakfast is associated with an increased risk of chronic inflammatory diseases. This study aimed to examine the association between breakfast-eating habits and inflammation, using high-sensitivity C-reactive protein (hs-CRP) as a marker.
Methods:
A total of 4,000 Korean adult males with no history of myocardial infarction, angina, stroke, diabetes, rheumatoid arthritis, cancer, or current smoking were included. Data from the 2016–2018 Korea National Health and Nutrition Examination Survey were used for analysis. The frequency of breakfast consumption was assessed through a questionnaire item in the dietary survey section asking participants about their weekly breakfast consumption routines over the past year. Participants were categorized into two groups, namely “0–2 breakfasts per week” and “3–7 breakfasts per week”; hs-CRP concentrations were measured through blood tests.
Results:
Comparing between the “infrequent breakfast consumption (0–2 breakfasts per week)” and “frequent breakfast consumption (3–7 breakfasts per week)” groups, the mean hs-CRP was found to be significantly higher in the “infrequent breakfast consumption” group, even after adjusting for age, body mass index, physical activity, alcohol consumption, systolic blood pressure, blood pressure medication, fasting blood glucose, and triglycerides (mean hs-CRP: frequent breakfast consumption, 1.36±0.09 mg/L; infrequent breakfast consumption, 1.17±0.05 mg/L; P-value=0.036).
Conclusion
Less frequent breakfast consumption was associated with elevated hs-CRP levels. Further large-scale studies incorporating adjusted measures of daily eating patterns as well as food quality and quantity are required for a deeper understanding of the role of breakfast in the primary prevention of chronic inflammatory diseases.
10.Erratum: Korean Gastric Cancer Association-Led Nationwide Survey on Surgically Treated Gastric Cancers in 2023
Dong Jin KIM ; Jeong Ho SONG ; Ji-Hyeon PARK ; Sojung KIM ; Sin Hye PARK ; Cheol Min SHIN ; Yoonjin KWAK ; Kyunghye BANG ; Chung-sik GONG ; Sung Eun OH ; Yoo Min KIM ; Young Suk PARK ; Jeesun KIM ; Ji Eun JUNG ; Mi Ran JUNG ; Bang Wool EOM ; Ki Bum PARK ; Jae Hun CHUNG ; Sang-Il LEE ; Young-Gil SON ; Dae Hoon KIM ; Sang Hyuk SEO ; Sejin LEE ; Won Jun SEO ; Dong Jin PARK ; Yoonhong KIM ; Jin-Jo KIM ; Ki Bum PARK ; In CHO ; Hye Seong AHN ; Sung Jin OH ; Ju-Hee LEE ; Hayemin LEE ; Seong Chan GONG ; Changin CHOI ; Ji-Ho PARK ; Eun Young KIM ; Chang Min LEE ; Jong Hyuk YUN ; Seung Jong OH ; Eunju LEE ; Seong-A JEONG ; Jung-Min BAE ; Jae-Seok MIN ; Hyun-dong CHAE ; Sung Gon KIM ; Daegeun PARK ; Dong Baek KANG ; Hogoon KIM ; Seung Soo LEE ; Sung Il CHOI ; Seong Ho HWANG ; Su-Mi KIM ; Moon Soo LEE ; Sang Hyun KIM ; Sang-Ho JEONG ; Yusung YANG ; Yonghae BAIK ; Sang Soo EOM ; Inho JEONG ; Yoon Ju JUNG ; Jong-Min PARK ; Jin Won LEE ; Jungjai PARK ; Ki Han KIM ; Kyung-Goo LEE ; Jeongyeon LEE ; Seongil OH ; Ji Hun PARK ; Jong Won KIM ;
Journal of Gastric Cancer 2025;25(2):400-402

Result Analysis
Print
Save
E-mail