1.Histopathological evaluation of the Pathology lungs in experimental autoimmune encephalomyelitis
Sungmoo HONG ; Jeongtae KIM ; Kyungsook JUNG ; Meejung AHN ; Changjong MOON ; Yoshihiro NOMURA ; Hiroshi MATSUDA ; Akane TANAKA ; Hyohoon JEONG ; Taekyun SHIN
Journal of Veterinary Science 2024;25(3):e35-
Objective:
This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry.
Methods:
Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein 35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry.
Results:
Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05).Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice.
Conclusions
and Relevance: Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.
2.Blood-retina barrier dysfunction in experimental autoimmune uveitis: the pathogenesis and therapeutic targets
Jeongtae KIM ; Jiyoon CHUN ; Meejung AHN ; Kyungsook JUNG ; Changjong MOON ; Taekyun SHIN
Anatomy & Cell Biology 2022;55(1):20-27
Experimental autoimmune uveitis (EAU), an animal model of human uveitis, is characterized by infiltration of autoimmune T cells in the uvea as well as in the retina of susceptible animals. EAU is induced by the immunization of uveitogenic antigens, including either retinal soluble-antigen or interphotoreceptor retinoid-binding proteins, in Lewis rats. The pathogenesis of EAU in rats involves the proliferation of autoimmune T cells in peripheral lymphoid tissues and breakdown of the blood-retinal barrier, primarily in the uvea and retina, finally inducing visual dysfunction. In this review, we describe recent EAU studies to facilitate the design of a therapeutic strategy through the interruption of uveitogenic factors during the course of EAU, which will be helpful for controlling human uveitis.
3.Considerations for experimental animal ethics in the research planning and evaluation process
Kosin Medical Journal 2022;37(4):271-277
Research using experimental animals has substantially contributed to advances in science and medicine. Animal experiments are nearly essential for biomedical research and development efforts. Because many animals are sacrificed, researchers should consider the welfare of experimental animals and related ethical issues, along with the successful results of their experiments. This review introduces the criteria that should be considered in terms of experimental animal ethics, based on the principles of the 3 R’s: replacement, representing careful consideration of the need for animal experiments; reduction, representing the use of the minimal number of animals to obtain meaningful experimental results; and refinement, representing continuous effects to find alternative methods to reduce pain and distress in experimental animals. Based on these principles, the following points should be considered when planning experiments: the necessity of animal experiments; alternatives to animal experiments; the relevance of the species and numbers of experimental animals; appropriate assessment and management of pain; the proper usage of sedatives, painkillers, and anesthesia; and valid timing for humane endpoints and euthanasia. These criteria are beneficial for both experimental animals and researchers because careful handling to ensure experimental animal welfare guarantees that scientific research will yield convincing, repeatable, and accurate results.
4.Attenuation of Experimental Autoimmune Uveitis in Lewis Rats by Betaine
Yuna CHOI ; Kyungsook JUNG ; Hyo Jin KIM ; Jiyoon CHUN ; Meejung AHN ; Youngheun JEE ; Hyun Ju KO ; Changjong MOON ; Hiroshi MATSUDA ; Akane TANAKA ; Jeongtae KIM ; Taekyun SHIN
Experimental Neurobiology 2021;30(4):308-317
Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.
5.Attenuation of Experimental Autoimmune Uveitis in Lewis Rats by Betaine
Yuna CHOI ; Kyungsook JUNG ; Hyo Jin KIM ; Jiyoon CHUN ; Meejung AHN ; Youngheun JEE ; Hyun Ju KO ; Changjong MOON ; Hiroshi MATSUDA ; Akane TANAKA ; Jeongtae KIM ; Taekyun SHIN
Experimental Neurobiology 2021;30(4):308-317
Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.
6.Gene Expression Profile of Olfactory Transduction Signaling in an Animal Model of Human Multiple Sclerosis
Jeongtae KIM ; Meejung AHN ; Yuna CHOI ; Poornima EKANAYAKE ; Chul Min PARK ; Changjong MOON ; Kyungsook JUNG ; Akane TANAKA ; Hiroshi MATSUDA ; Taekyun SHIN
Experimental Neurobiology 2019;28(1):74-84
Olfactory dysfunction occurs in multiple sclerosis in humans, as well as in an animal model of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyze differentially expressed genes (DEGs) in olfactory bulb of EAE-affected mice by next generation sequencing, with a particular focus on changes in olfaction-related signals. EAE was induced in C57BL/6 mice following immunization with myelin oligodendrocyte glycoprotein and adjuvant. Inflammatory lesions were identified in the olfactory bulbs as well as in the spinal cord of immunized mice. Analysis of DEGs in the olfactory bulb of EAE-affected mice revealed that 44 genes were upregulated (and which were primarily related to inflammatory mediators), while 519 genes were downregulated; among the latter, olfactory marker protein and stomatin-like 3, which have been linked to olfactory signal transduction, were significantly downregulated (log2 [fold change] >1 and p-value < 0.05). These findings suggest that inflammation in the olfactory bulb of EAE-affected mice is associated with the downregulation of some olfactory signal transduction genes, particularly olfactory marker protein and stomatin-like 3, which may lead to olfactory dysfunction in an animal model of human multiple sclerosis.
Animals
;
Down-Regulation
;
Encephalomyelitis, Autoimmune, Experimental
;
Gene Expression
;
Humans
;
Immunization
;
Inflammation
;
Mice
;
Models, Animal
;
Multiple Sclerosis
;
Myelin-Oligodendrocyte Glycoprotein
;
Olfactory Bulb
;
Olfactory Marker Protein
;
Signal Transduction
;
Spinal Cord
;
Transcriptome
7.Immunohistochemical localization of nerve injury-induced protein-1 in mouse tissues
Poornima EKANAYAKE ; Meejung AHN ; Jeongtae KIM ; Yuna CHOI ; Taekyun SHIN
Anatomy & Cell Biology 2019;52(4):455-461
Animals
;
Blotting, Western
;
Cell Adhesion
;
Cerebrum
;
Colon
;
Connective Tissue
;
Homeostasis
;
Ileum
;
Immunohistochemistry
;
Kidney
;
Liver
;
Lung
;
Mice
;
Neurons
;
Pancreas
;
Rats
;
Schwann Cells
;
Sciatic Nerve
;
Skin
;
Spleen
;
Stomach
;
Testis
9.Amelioration of experimental autoimmune encephalomyelitis by Ishige okamurae.
Meejung AHN ; Jeongtae KIM ; Wonjun YANG ; Yuna CHOI ; Poornima EKANAYAKE ; Hyunju KO ; Youngheun JEE ; Taekyun SHIN
Anatomy & Cell Biology 2018;51(4):292-298
Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune central nervous system disease characterized by inflammation with oxidative stress. The aim of this study was to evaluate an anti-inflammatory effect of Ishige okamurae on EAE-induced paralysis in rats. An ethanolic extract of I. okamurae significantly delayed the first onset and reduced the duration and severity of hind-limb paralysis. The neuropathological and immunohistochemical findings in the spinal cord were in agreement with these clinical results. T-cell proliferation assay revealed that the ethyl-acetate fraction of I. okamurae suppressed the proliferation of myelin basic protein reactive T cells from EAE affected rats. Flow cytometric analysis showed TCRαβ+ T cells was significantly reduced in the spleen of EAE rats with I. okamurae treatment with concurrent decrease of inflammatory mediators including tumor necrosis factor-α and cyclooxygenase-2. Collectively, it is postulated that I. okamurae ameliorates EAE paralysis with suppression of T-cell proliferation as well as decrease of pro-inflammatory mediators as far as rat EAE is concerned.
Animals
;
Central Nervous System
;
Cyclooxygenase 2
;
Encephalomyelitis, Autoimmune, Experimental*
;
Ethanol
;
Inflammation
;
Myelin Basic Protein
;
Necrosis
;
Oxidative Stress
;
Paralysis
;
Rats
;
Spinal Cord
;
Spleen
;
T-Lymphocytes
10.Lithium ameliorates rat spinal cord injury by suppressing glycogen synthase kinase-3β and activating heme oxygenase-1.
Yonghoon KIM ; Jeongtae KIM ; Meejung AHN ; Taekyun SHIN
Anatomy & Cell Biology 2017;50(3):207-213
Glycogen synthase kinase (GSK)-3β and related enzymes are associated with various forms of neuroinflammation, including spinal cord injury (SCI). Our aim was to evaluate whether lithium, a non-selective inhibitor of GSK-3β, ameliorated SCI progression, and also to analyze whether lithium affected the expression levels of two representative GSK-3β–associated molecules, nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) (a target gene of Nrf-2). Intraperitoneal lithium chloride (80 mg/kg/day for 3 days) significantly improved locomotor function at 8 days post-injury (DPI); this was maintained until 14 DPI (P<0.05). Western blotting showed significantly increased phosphorylation of GSK-3β (Ser9), Nrf-2, and the Nrf-2 target HO-1 in the spinal cords of lithium-treated animals. Fewer neuropathological changes (e.g., hemorrhage, inflammatory cell infiltration, and tissue loss) were observed in the spinal cords of the lithium-treated group compared with the vehicle-treated group. Microglial activation (evaluated by measuring the immunoreactivity of ionized calcium-binding protein-1) was also significantly reduced in the lithium-treated group. These findings suggest that GSK-3β becomes activated after SCI, and that a non-specific enzyme inhibitor, lithium, ameliorates rat SCI by increasing phosphorylation of GSK-3β and the associated molecules Nrf-2 and HO-1.
Animals
;
Blotting, Western
;
Glycogen Synthase Kinases
;
Glycogen Synthase*
;
Glycogen*
;
Heme Oxygenase-1*
;
Heme*
;
Hemorrhage
;
Lithium Chloride
;
Lithium*
;
Phosphorylation
;
Rats*
;
Spinal Cord Injuries*
;
Spinal Cord*

Result Analysis
Print
Save
E-mail