1.Comparative epigenetics of domestic animals: focusing on DNA accessibility and its impact on gene regulation and traits
Journal of Veterinary Science 2025;26(1):e9-
and Relevance: Chromatin accessibility is crucial in gene regulation in domestic animals, influencing development, immune response, and productivity. Despite the progress, more comprehensive epigenomic datasets and cross-species analytical tools are needed to harness chromatin accessibility in domestic animal research. Understanding these mechanisms has practical applications in improving livestock traits, advancing breeding programs, and developing disease-resistant animals, highlighting the importance of integrating epigenetic and genomic tools for enhancing animal health and productivity.
2.Comparative epigenetics of domestic animals: focusing on DNA accessibility and its impact on gene regulation and traits
Journal of Veterinary Science 2025;26(1):e9-
and Relevance: Chromatin accessibility is crucial in gene regulation in domestic animals, influencing development, immune response, and productivity. Despite the progress, more comprehensive epigenomic datasets and cross-species analytical tools are needed to harness chromatin accessibility in domestic animal research. Understanding these mechanisms has practical applications in improving livestock traits, advancing breeding programs, and developing disease-resistant animals, highlighting the importance of integrating epigenetic and genomic tools for enhancing animal health and productivity.
3.Comparative epigenetics of domestic animals: focusing on DNA accessibility and its impact on gene regulation and traits
Journal of Veterinary Science 2025;26(1):e9-
and Relevance: Chromatin accessibility is crucial in gene regulation in domestic animals, influencing development, immune response, and productivity. Despite the progress, more comprehensive epigenomic datasets and cross-species analytical tools are needed to harness chromatin accessibility in domestic animal research. Understanding these mechanisms has practical applications in improving livestock traits, advancing breeding programs, and developing disease-resistant animals, highlighting the importance of integrating epigenetic and genomic tools for enhancing animal health and productivity.
4.Comparative epigenetics of domestic animals: focusing on DNA accessibility and its impact on gene regulation and traits
Journal of Veterinary Science 2025;26(1):e9-
and Relevance: Chromatin accessibility is crucial in gene regulation in domestic animals, influencing development, immune response, and productivity. Despite the progress, more comprehensive epigenomic datasets and cross-species analytical tools are needed to harness chromatin accessibility in domestic animal research. Understanding these mechanisms has practical applications in improving livestock traits, advancing breeding programs, and developing disease-resistant animals, highlighting the importance of integrating epigenetic and genomic tools for enhancing animal health and productivity.
5.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
6.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
7.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
8.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
9.Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans
Junghyun NAMKUNG ; Seok Min KIM ; Won Ik CHO ; So Young YOO ; Beomjun MIN ; Sang Yool LEE ; Ji-Hye LEE ; Heyeon PARK ; Soyoung BAIK ; Je-Yeon YUN ; Nam Soo KIM ; Jeong-Hyun KIM
Psychiatry Investigation 2024;21(11):1228-1237
Objective:
The rapid societal changes have underscored the importance of effective stress detection and management. Chronic mental stress significantly contributes to both physical and psychological illnesses. However, many individuals often remain unaware of their stress levels until they face physical health issues, highlighting the necessity for regular stress monitoring. This study aimed to investigate the effectiveness of vocal biomarkers in detecting stress levels among healthy Korean employees and to contribute to digital healthcare solutions.
Methods:
We conducted a multi-center clinical study by collecting voice recordings from 115 healthy Korean employees under both relaxed and stress-induced conditions. Stress was induced using the socially evaluated cold pressor test. The Emphasized Channel Attention, Propagation and Aggregation in Time delay neural network (ECAPA-TDNN) deep learning architecture, renowned for its advanced capabilities in analyzing person-specific voice features, was employed to develop stress prediction scores.
Results:
The proposed model achieved a 70% accuracy rate in detecting stress. This performance underscores the potential of vocal biomarkers as a convenient and effective tool for individuals to self-monitor and manage their stress levels within digital healthcare frameworks.
Conclusion
The findings emphasize the promise of voice-based mental stress assessments within the Korean population and the importance of continued research on vocal biomarkers across diverse linguistic demographics.
10.Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression
Sumin OH ; Yang-Hyun BAEK ; Sungju JUNG ; Sumin YOON ; Byeonggeun KANG ; Su-hyang HAN ; Gaeul PARK ; Je Yeong KO ; Sang-Young HAN ; Jin-Sook JEONG ; Jin-Han CHO ; Young-Hoon ROH ; Sung-Wook LEE ; Gi-Bok CHOI ; Yong Sun LEE ; Won KIM ; Rho Hyun SEONG ; Jong Hoon PARK ; Yeon-Su LEE ; Kyung Hyun YOO
Clinical and Molecular Hepatology 2024;30(2):247-262
Background/Aims:
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression.
Methods:
Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD.
Results:
After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort.
Conclusions
We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential as a panel of diagnostic genes of MASLD-associated disease.

Result Analysis
Print
Save
E-mail