1.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
2.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
3.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
4.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
5.Hypoxia‑inducible factor‑1α‑deficient adipose‑tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein‑1
Gi‑Sue KANG ; Young‑Eun KIM ; Ho Rim OH ; Hye‑Ju JO ; Seoyeon BOK ; Yoon Kyung JEON ; Gi Jeong CHEON ; Tae‑Young ROH ; Young‑Tae CHANG ; Do Joong PARK ; G‑One AHN
Laboratory Animal Research 2024;40(4):408-423
Background:
Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane gener‑ ally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming ’beige’ adipocytes.
Results:
In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking func‑ tional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased gly‑ colysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of cocultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals.
Conclusions
UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
6.Colon cancer: the 2023 Korean clinical practice guidelines for diagnosis and treatment
Hyo Seon RYU ; Hyun Jung KIM ; Woong Bae JI ; Byung Chang KIM ; Ji Hun KIM ; Sung Kyung MOON ; Sung Il KANG ; Han Deok KWAK ; Eun Sun KIM ; Chang Hyun KIM ; Tae Hyung KIM ; Gyoung Tae NOH ; Byung-Soo PARK ; Hyeung-Min PARK ; Jeong Mo BAE ; Jung Hoon BAE ; Ni Eun SEO ; Chang Hoon SONG ; Mi Sun AHN ; Jae Seon EO ; Young Chul YOON ; Joon-Kee YOON ; Kyung Ha LEE ; Kyung Hee LEE ; Kil-Yong LEE ; Myung Su LEE ; Sung Hak LEE ; Jong Min LEE ; Ji Eun LEE ; Han Hee LEE ; Myong Hoon IHN ; Je-Ho JANG ; Sun Kyung JEON ; Kum Ju CHAE ; Jin-Ho CHOI ; Dae Hee PYO ; Gi Won HA ; Kyung Su HAN ; Young Ki HONG ; Chang Won HONG ; Jung-Myun KWAK ;
Annals of Coloproctology 2024;40(2):89-113
Colorectal cancer is the third most common cancer in Korea and the third leading cause of death from cancer. Treatment outcomes for colon cancer are steadily improving due to national health screening programs with advances in diagnostic methods, surgical techniques, and therapeutic agents.. The Korea Colon Cancer Multidisciplinary (KCCM) Committee intends to provide professionals who treat colon cancer with the most up-to-date, evidence-based practice guidelines to improve outcomes and help them make decisions that reflect their patients’ values and preferences. These guidelines have been established by consensus reached by the KCCM Guideline Committee based on a systematic literature review and evidence synthesis and by considering the national health insurance system in real clinical practice settings. Each recommendation is presented with a recommendation strength and level of evidence based on the consensus of the committee.
7.A Case of de novo MPO-associated Central Nervous System Vasculitis Following Heterogeneous mRNA1273 COVID-19 Booster Vaccination
Young Seok JEONG ; Sung Jo BANG ; Geun Yeong KIM ; Jae Ho JEON ; Gi Ryeong OH ; Chong Hyuk CHUNG ; Hyungjong PARK
Journal of the Korean Neurological Association 2023;41(2):145-148
The coronavirus disease-19 (COVID-19) pandemic leaded to inevitable expeditious vaccine rollout without sufficient safety profile. Especially, severe acute respiratory syndrome coronavirus 2 infection has known to induce overreacted immune responses such as releasing of proteinase-3 and myeloperoxidase (MPO) by neutrophil. This overreacted immune response leads to the concern of the development of autoimmune diseases after COVID-19 vaccination. We report the case of de novo MPO-associated systemic vasculitis involving central nervous system following heterogeneous mRNA1273 COVID-19 booster vaccination.
8.The Effect of Genetically Modified Lactobacillus plantarum Carrying Bone Morphogenetic Protein 2 Gene on an Ovariectomized Rat
Eun-Sun JIN ; Ji Yeon KIM ; Jung-Mo YANG ; Jun-Sub KIM ; JoongKee MIN ; Sang Ryong JEON ; Kyoung Hyo CHOI ; Gi-Seong MOON ; Je Hoon JEONG
Journal of Korean Neurosurgical Society 2022;65(2):204-214
Objective:
: Osteoporosis result from age-related decline in the number of osteoblast progenitors in the bone marrow. Probiotics have beneficial effects on the host, when administered in appropriate amounts. This study investigated the effects of probiotics expressing specific genes, especially the effects of genetically modified bone morphogenetic protein (BMP)-2-expressing Lactobacillus plantarum CJNU 3003 (LP) on ovariectomized rats.
Methods:
: Twenty-eight female Wistar rats (250–300 g, 12 weeks old) were divided into four groups : the sham (control), the ovariectomy (OVX)-induced osteoporosis group (OVX), the OVX and LP (OVX/LP), OVX and genetically modified BMP-2-expressing LP (OVX/LP with BMP) groups. The three groups underwent bilateral OVX and two of these groups were administered two different types of LP via oral gavage daily. At 16 weeks post-OVX, blood was collected from the heart and the bilateral tibiae were extracted and were scanned by ex-vivo micro-computed tomography and stained with hematoxylin-and-eosin (H&E) and Masson’s trichrome stain for pathological assessment. The serum levels of osteocalcin (OC), rat C-telopeptide of type I collagen (CTX-I), BMP-2, and receptor activator of nuclear factor-ĸB ligand (RANKL) were measured.
Results:
: The 3D-micro-computed tomography images showed that the trabecular structure in the OVX/LP with BMP group was maintained compared with OVX and OVX/LP groups. No significant differences were detected in trabecular thickness (Tb.Th) between control and OVX/LP with BMP groups (p>0.05). Furthermore, a tendency toward increased BMD, trabecular bone volume, Tb.Th, and trabecular number and decreased trabecular separation was found in rats in the OVX/LP with BMP groups when compared with the OVX and OVX/LP groups (p>0.05). The H&E and Masson’s trichrome stained sections showed a thicker trabecular bone in the OVX/LP with BMP group compared with the OVX and OVX/LP groups. There was no difference in serum levels of OC, CTX and RANKL control and OVX/LP with BMP groups (p>0.05). In contrast, significant differences were found in OC and CTX-1 levels between the OVX and OVX/LP with BMP groups (p<0.05).
Conclusion
: Our results showed that the expression of genetically modified BMP-2 showed inhibition effect for bone loss in a rat model of osteoporosis.
9.Complete response in hepatocellular carcinoma with lymph node metastasis by combination therapy of atezolizumab and bevacizumab: a case report
Sang Youn HWANG ; Sun Mi LEE ; Jeong Woo LIM ; Gi Jung JEON ; Hye Won LEE
Journal of Liver Cancer 2021;21(2):177-180
Sorafenib is the oldest first line systemic treatment in patients with advanced hepatocellularcarcinoma (HCC) and has been used exclusively for nearly 10 years. The superiority ofadministering a combination of atezolizumab plus bevacizumab (AteBeva) compared tosorafenib as first line systemic treatment for unresectable HCC was recently proven duringthe IMbrave150 Phase III randomized trial. While clinicians can expect improved responsesand treatment outcomes due to the good results of the IMbrave 150 trial, they must alsoconsider that atezolizumab can cause various immune-related adverse events (IrAEs). Basedon the above suggestions, we herein present a case of HCC with lymph node metastasiswho achieved complete remission following treatment with AteBeva and developed an IrAE(adrenal insufficiency). Further study of real-life data regarding combination therapy withAteBeva is needed to manage patients with advanced HCC.
10.Association of Quantitative Flow Ratio with Lesion Severity and Its Ability to Discriminate Myocardial Ischemia
Neng DAI ; Doyeon HWANG ; Joo Myung LEE ; Jinlong ZHANG ; Yaliang TONG ; Ki-Hyun JEON ; Jin Chul PAENG ; Gi Jeong CHEON ; Bon-Kwon KOO ; Junbo GE
Korean Circulation Journal 2021;51(2):126-139
Background and Objectives:
Quantitative flow ratio (QFR) is an angiography-based technique for functional assessment of coronary artery stenosis. This study investigated the response of QFR to different degree of stenosis severity and its ability to predict the positron emission tomography (PET)-defined myocardial ischemia.
Methods:
From 109 patients with 185 vessels who underwent both 13 N-ammonia PET and invasive physiological measurement, we compared QFR, fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) for the responses to the different degree of anatomical (percent diameter stenosis [%DS]) and hemodynamic (relative flow reserve [RFR], coronary flow reserve, hyperemic stenosis resistance, and stress myocardial flow) stenosis severity and diagnostic performance against PET-derived parameters.
Results:
QFR, FFR, and iFR showed similar responses to both anatomic and hemodynamic stenosis severity. Regarding RFR, the diagnostic accuracy of QFR was lower than FFR (76.2% vs. 83.2%, p=0.021) and iFR (76.2% vs. 84.3%, p=0.031). For coronary flow capacity (CFC), QFR showed a lower accuracy than iFR (74.1% vs. 82%, p=0.031) and lower discriminant function than FFR (area under curve: 0.74 vs. 0.79, p=0.044). Discordance between QFR and FFR or iFR was shown in 14.6% of cases and was driven by the difference in %DS and heterogeneous distribution of PET-derived RFR and stress myocardial blood flow.
Conclusions
QFR demonstrated a similar response to different anatomic and hemodynamic stenosis severity as FFR or iFR. However, its diagnostic performance was inferior to FFR and iFR when PET-derived RFR and CFC were used as a reference.

Result Analysis
Print
Save
E-mail