1.A Novel Histone Deacetylase 6 Inhibitor, 4-FHA, Improves Scopolamine-Induced Cognitive and Memory Impairment in Mice
Jee-Yeon SEO ; Jisoo KIM ; Yong-Hyun KO ; Bo-Ram LEE ; Kwang-Hyun HUR ; Young Hoon JUNG ; Hyun-Ju PARK ; Seok-Yong LEE ; Choon-Gon JANG
Biomolecules & Therapeutics 2025;33(2):268-277
Although histone deacetylase 6 (HDAC6) is considered a therapeutic target for Alzheimer’s disease (AD), its role in cholinergic dysfunction in AD patients remains unclear. This study investigated the effects of (E)-3-(2-(4-fluorostyryl)thiazol-4-yl)-N-hydroxypropanamide (4-FHA), a new synthetic HDAC6 inhibitor, on cognitive and memory impairments in a scopolamine-induced-AD mouse model. Behaviorally, 4-FHA improved scopolamine-induced memory impairments in the Y-maze, passive avoidance, and Morris water maze tests. In addition, 4-FHA ameliorated scopolamine-induced cognitive impairments in the novel object recognition and place recognition tests. Furthermore, 4-FHA increased acetylation of α-tubulin (a major HDAC6 substrate); the expression of BDNF; and the phosphorylation of ERK 1/2, CREB, and ChAT in the hippocampus of scopolamine-treated mice. In summary, according to our data 4-FHA, an HDAC6 inhibitor, improved the cognitive and memory deficits of the AD mouse model by normalizing BDNF signaling and synaptic transmission, suggesting that 4-FHA might be a potential therapeutic candidate for AD.
2.A Novel Histone Deacetylase 6 Inhibitor, 4-FHA, Improves Scopolamine-Induced Cognitive and Memory Impairment in Mice
Jee-Yeon SEO ; Jisoo KIM ; Yong-Hyun KO ; Bo-Ram LEE ; Kwang-Hyun HUR ; Young Hoon JUNG ; Hyun-Ju PARK ; Seok-Yong LEE ; Choon-Gon JANG
Biomolecules & Therapeutics 2025;33(2):268-277
Although histone deacetylase 6 (HDAC6) is considered a therapeutic target for Alzheimer’s disease (AD), its role in cholinergic dysfunction in AD patients remains unclear. This study investigated the effects of (E)-3-(2-(4-fluorostyryl)thiazol-4-yl)-N-hydroxypropanamide (4-FHA), a new synthetic HDAC6 inhibitor, on cognitive and memory impairments in a scopolamine-induced-AD mouse model. Behaviorally, 4-FHA improved scopolamine-induced memory impairments in the Y-maze, passive avoidance, and Morris water maze tests. In addition, 4-FHA ameliorated scopolamine-induced cognitive impairments in the novel object recognition and place recognition tests. Furthermore, 4-FHA increased acetylation of α-tubulin (a major HDAC6 substrate); the expression of BDNF; and the phosphorylation of ERK 1/2, CREB, and ChAT in the hippocampus of scopolamine-treated mice. In summary, according to our data 4-FHA, an HDAC6 inhibitor, improved the cognitive and memory deficits of the AD mouse model by normalizing BDNF signaling and synaptic transmission, suggesting that 4-FHA might be a potential therapeutic candidate for AD.
3.A Novel Histone Deacetylase 6 Inhibitor, 4-FHA, Improves Scopolamine-Induced Cognitive and Memory Impairment in Mice
Jee-Yeon SEO ; Jisoo KIM ; Yong-Hyun KO ; Bo-Ram LEE ; Kwang-Hyun HUR ; Young Hoon JUNG ; Hyun-Ju PARK ; Seok-Yong LEE ; Choon-Gon JANG
Biomolecules & Therapeutics 2025;33(2):268-277
Although histone deacetylase 6 (HDAC6) is considered a therapeutic target for Alzheimer’s disease (AD), its role in cholinergic dysfunction in AD patients remains unclear. This study investigated the effects of (E)-3-(2-(4-fluorostyryl)thiazol-4-yl)-N-hydroxypropanamide (4-FHA), a new synthetic HDAC6 inhibitor, on cognitive and memory impairments in a scopolamine-induced-AD mouse model. Behaviorally, 4-FHA improved scopolamine-induced memory impairments in the Y-maze, passive avoidance, and Morris water maze tests. In addition, 4-FHA ameliorated scopolamine-induced cognitive impairments in the novel object recognition and place recognition tests. Furthermore, 4-FHA increased acetylation of α-tubulin (a major HDAC6 substrate); the expression of BDNF; and the phosphorylation of ERK 1/2, CREB, and ChAT in the hippocampus of scopolamine-treated mice. In summary, according to our data 4-FHA, an HDAC6 inhibitor, improved the cognitive and memory deficits of the AD mouse model by normalizing BDNF signaling and synaptic transmission, suggesting that 4-FHA might be a potential therapeutic candidate for AD.
4.Obstructive Sleep Apnea: Pathophysiology and Treatment
Jee-Won JANG ; Hye-Min JU ; Hye-Mi JEON ; Yong-Woo AHN ; Sung-Hee JEONG ; Soo-Min OK
Journal of Oral Medicine and Pain 2024;49(4):71-78
Obstructive sleep apnea (OSA) is a disorder driven by a combination of anatomical and functional factors. A narrow upper airway, fatty deposits around the tongue, and enlarged soft tissues all contribute to airway collapse. Additionally, reduced neuromuscular activity during sleep and increased instability in respiratory control heighten the risk of airway obstruction. OSA is linked to serious health problems, including metabolic disorders, cardiovascular diseases, and excessive daytime sleepiness, underscoring the importance of early diagnosis and treatment. Diagnosis is typically made through polysomnography, and continuous positive airway pressure therapy remains the most effective treatment.For individuals with mild to moderate OSA, oral appliance therapy offers a viable alternative, while emerging treatments such as hypoglossal nerve stimulation and pharmacological interventions provide additional options. By identifying distinct OSA phenotypes, personalized treatment approaches can be developed, and future research should focus on optimizing these strategies to meet the specific needs of individual patients.
5.Differences in Symptoms According to the Concordance Value Between Self-Reported Pain Sites and Standardized Palpation Pain Sites in Temporomandibular Disorder Patients: Pilot Study
Jee-Won JANG ; Seo-Young CHOI ; Yong-Woo AHN ; Sung-Hee JEONG ; Soo-Min OK ; Hye-Mi JEON ; Hye-Min JU
Journal of Oral Medicine and Pain 2024;49(3):49-56
Purpose:
The aims were to investigate potential differences in clinical assessments among acute pain-related temporomandibular disorder (TMD) with different concordance value (CV) between number of self-reported painful site (NSP) and number of painful sites on palpation (NPP), and if it makes sense to treat them differently.
Methods:
A total of 61 patients were divided into three groups according to CV: 10 patients (concordance poor [CP]), 19 patients (concordance moderate [CM]), and 32 patients (concordance high [CH]). Clinical assessments were conducted using a standardized method in diagnostic criteria for temporomandibular disorders (DC/TMD). We compared collected information including sex, diagnosis, numerical rating scale (NRS), NPP, NSP, sleep duration, DC/TMD Axis II questionnaire, and perceived stress scale among three groups.
Results:
Among the clinical assessment, NRS, sleep duration, NPP, NSP, total scores of Oral Behaviors Checklist, Patient Health Questionnaire (PHQ)-15, PHQ-9 showed significant differences among 3 groups. NRS, NPP, NSP, PHQ-15, and PHQ-9 were higher in the CP group than in the CM and CH groups. Sleep duration was positively and NPP, NRS were negatively correlated with CV.
Conclusions
While previous studies suggested differences between chronic and acute TMD in DC/TMD items, our findings propose the CV might be a key factor that could predict the severity and susceptibility of acute-TMD patients. However, Additional studies are required to determine whether their long-term prognosis was similar to that of chronic pain patients and what the response to treatment was among the three groups.
6.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
7.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
8.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
9.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
10.Clinical Practice Recommendations for the Use of Next-Generation Sequencing in Patients with Solid Cancer: A Joint Report from KSMO and KSP
Miso KIM ; Hyo Sup SHIM ; Sheehyun KIM ; In Hee LEE ; Jihun KIM ; Shinkyo YOON ; Hyung-Don KIM ; Inkeun PARK ; Jae Ho JEONG ; Changhoon YOO ; Jaekyung CHEON ; In-Ho KIM ; Jieun LEE ; Sook Hee HONG ; Sehhoon PARK ; Hyun Ae JUNG ; Jin Won KIM ; Han Jo KIM ; Yongjun CHA ; Sun Min LIM ; Han Sang KIM ; Choong-kun LEE ; Jee Hung KIM ; Sang Hoon CHUN ; Jina YUN ; So Yeon PARK ; Hye Seung LEE ; Yong Mee CHO ; Soo Jeong NAM ; Kiyong NA ; Sun Och YOON ; Ahwon LEE ; Kee-Taek JANG ; Hongseok YUN ; Sungyoung LEE ; Jee Hyun KIM ; Wan-Seop KIM
Cancer Research and Treatment 2024;56(3):721-742
In recent years, next-generation sequencing (NGS)–based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.

Result Analysis
Print
Save
E-mail