1.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
2.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
3.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
4.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong- Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(1):1-23
5.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause: Part II
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):55-77
6.Corrigendum: 2023 Korean Society of Menopause - Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):126-126
7.The Pattern of Care for Brain Metastasis from Breast Cancer over the Past 10 Years in Korea: A Multicenter Retrospective Study (KROG 16-12)
Jae Sik KIM ; Kyubo KIM ; Wonguen JUNG ; Kyung Hwan SHIN ; Seock-Ah IM ; Hee-Jun KIM ; Yong Bae KIM ; Jee Suk CHANG ; Jee Hyun KIM ; Doo Ho CHOI ; Yeon Hee PARK ; Dae Yong KIM ; Tae Hyun KIM ; Byung Ock CHOI ; Sea-Won LEE ; Suzy KIM ; Jeanny KWON ; Ki Mun KANG ; Woong-Ki CHUNG ; Kyung Su KIM ; Ji Ho NAM ; Won Sup YOON ; Jin Hee KIM ; Jihye CHA ; Yoon Kyeong OH ; In Ah KIM
Cancer Research and Treatment 2022;54(4):1121-1129
Purpose:
We aimed to investigate manifestations and patterns of care for patients with brain metastasis (BM) from breast cancer (BC) and compared their overall survival (OS) from 2005 through 2014 in Korea.
Materials and Methods:
We retrospectively reviewed 600 BC patients with BM diagnosed between 2005 and 2014. The median follow-up duration was 12.5 months. We categorized the patients into three groups according to the year when BM was initially diagnosed (group I [2005-2008], 98 patients; group II [2009-2011], 200 patients; and group III [2012-2014], 302 patients).
Results:
Over time, the median age at BM diagnosis increased by 2.2 years (group I, 49.0 years; group II, 48.3 years; and group III, 51.2 years; p=0.008). The percentage of patients with extracranial metastasis was 73.5%, 83.5%, and 86.4% for group I, II, and III, respectively (p=0.011). The time interval between BC and BM was prolonged in patients with stage III primary BC (median, 2.4 to 3 years; p=0.029). As an initial brain-directed treatment, whole-brain radiotherapy alone decreased from 80.0% in 2005 to 41.1% in 2014. Meanwhile, stereotactic radiosurgery or fractionated stereotactic radiotherapy alone increased from 13.3% to 34.7% during the same period (p=0.005). The median OS for group I, II, and III was 15.6, 17.9, and 15.0 months, respectively, with no statistical significance.
Conclusion
The manifestations of BM from BC and the pattern of care have changed from 2005 to 2014 in Korea. However, the OS has remained relatively unchanged over the 10 years.
8.Annual Case Volume and One-Year Mortality for Endovascular Treatment in Acute Ischemic Stroke
Jun Yup KIM ; Jihoon KANG ; Beom Joon KIM ; Seong-Eun KIM ; Do Yeon SEONG-EUN ; Keon-Joo LEE ; Hong-Kyun PARK ; Yong-Jin CHO ; Jong-Moo PARK ; Kyung Bok LEE ; Jae-Kwan CHA ; Ji Sung LEE ; Juneyoung LEE ; Ki Hwa YANG ; Ock Ran HONG ; Ji Hyeon SHIN ; Jung Hyun PARK ; Philip B. GORELICK ; Hee-Joon BAE
Journal of Korean Medical Science 2022;37(36):e270-
Background:
The association between endovascular treatment (EVT) case volume per hospital and clinical outcomes has been reported, but the exact volume threshold has not been determined. This study aimed to examine the case volume threshold in this context.
Methods:
National audit data on the quality of acute stroke care in patients admitted via emergency department, within 7 days of onset, in hospitals that treated ≥ 10 stroke cases during the audit period were analyzed. Ischemic stroke cases treated with EVT during the last three audits (2013, 2014, and 2016) were selected for the analysis. Annual EVT case volume per hospital was estimated and analyzed as a continuous and a categorical variable (in quartiles). The primary outcome measure was 1-year mortality as a surrogate of 3-month functional outcome. As post-hoc sensitivity analysis, replication of the study results was examined using the 2018 audit data.
Results:
We analyzed 1,746 ischemic stroke cases treated with EVT in 120 acute care hospitals. The median annual EVT case volume was 12.0 cases per hospital, and mortality rates at 1 month, 3 months, and 1 year were 12.7%, 16.6%, and 23.3%, respectively. Q3 and Q4 had 33% lower odds of 1-year mortality than Q1. Adjustments were made for predetermined confounders. Annual EVT case volume cut-off value for 1-year mortality was 15 cases per year (P < 0.02). The same cut-off value was replicated in the sensitivity analysis.
Conclusion
Annual EVT case volume was associated with 1-year mortality. The volume threshold per hospital was 15 cases per year.
9.Poor prognostic factors in human papillomavirus-positive head and neck cancer: who might not be candidates for de-escalation treatment?
Shin Hye YOO ; Chan Young OCK ; Bhumsuk KEAM ; Sung Joon PARK ; Tae Min KIM ; Jin Ho KIM ; Yoon Kyung JEON ; Eun Jae CHUNG ; Seong Keun KWON ; J Hun HAH ; Tack Kyun KWON ; Kyeong Chun JUNG ; Dong Wan KIM ; Hong Gyun WU ; Myung Whun SUNG ; Dae Seog HEO
The Korean Journal of Internal Medicine 2019;34(6):1313-1323
BACKGROUND/AIMS:
Since patients with human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) have favorable outcomes after treatment, treatment de-escalation for these patients is being actively investigated. However, not all HPV-positive HNSCCs are curable, and some patients have a poor prognosis. The purpose of this study was to identify poor prognostic factors in patients with HPV-positive HNSCC.
METHODS:
Patients who received a diagnosis of HNSCC and tested positive for HPV from 2000 to 2015 at a single hospital site (n = 152) were included in this retrospective analysis. HPV typing was conducted using the HPV DNA chip assay or liquid bead microarray system. Expression of p16 in the tumors was assessed by immunohistochemistry. To determine candidate factors associated with overall survival (OS), univariate and multivariable Cox regression analyses were performed.
RESULTS:
A total of 152 patients with HPV-positive HNSCC were included in this study; 82.2% were male, 43.4% were current or former smokers, and 84.2% had oropharyngeal cancer. By univariate analysis, old age, performance status ≥ 1, non-oropharyngeal location, advanced T classification (T3–4), and HPV genotype 18 were significantly associated with poor OS. By multivariable analysis, performance status ≥ 1 and non-oropharyngeal location were independently associated with shorter OS (hazard ratio [HR], 4.36, p = 0.015; HR, 11.83, p = 0.002, respectively). Furthermore, HPV genotype 18 positivity was also an independent poor prognostic factor of OS (HR, 10.87, p < 0.001).
CONCLUSIONS
Non-oropharyngeal cancer, poor performance status, and HPV genotype 18 were independent poor prognostic factors in patients with HPV-positive HNSCC. Patients with these risk factors might not be candidates for de-escalation treatment.
10.Induction of Angiogenesis by Malarial Infection through Hypoxia Dependent Manner
Mi Kyung PARK ; Eun Ji KO ; Kyung Yoon JEON ; Hyunsu KIM ; Jin Ok JO ; Kyung Wan BAEK ; Yun Jeong KANG ; Yung Hyun CHOI ; Yeonchul HONG ; Mee Sun OCK ; Hee Jae CHA
The Korean Journal of Parasitology 2019;57(2):117-125
Malarial infection induces tissue hypoxia in the host through destruction of red blood cells. Tissue hypoxia in malarial infection may increase the activity of HIF1α through an intracellular oxygen-sensing pathway. Activation of HIF1α may also induce vascular endothelial growth factor (VEGF) to trigger angiogenesis. To investigate whether malarial infection actually generates hypoxia-induced angiogenesis, we analyzed severity of hypoxia, the expression of hypoxia-related angiogenic factors, and numbers of blood vessels in various tissues infected with Plasmodium berghei. Infection in mice was performed by intraperitoneal injection of 2×10⁶ parasitized red blood cells. After infection, we studied parasitemia and survival. We analyzed hypoxia, numbers of blood vessels, and expression of hypoxia-related angiogenic factors including VEGF and HIF1α. We used Western blot, immunofluorescence, and immunohistochemistry to analyze various tissues from Plasmodium berghei-infected mice. In malaria-infected mice, parasitemia was increased over the duration of infection and directly associated with mortality rate. Expression of VEGF and HIF1α increased with the parasitemia in various tissues. Additionally, numbers of blood vessels significantly increased in each tissue type of the malaria-infected group compared to the uninfected control group. These results suggest that malarial infection in mice activates hypoxia-induced angiogenesis by stimulation of HIF1α and VEGF in various tissues.
Angiogenesis Inducing Agents
;
Animals
;
Anoxia
;
Blood Vessels
;
Blotting, Western
;
Erythrocytes
;
Fluorescent Antibody Technique
;
Immunohistochemistry
;
Injections, Intraperitoneal
;
Malaria
;
Mice
;
Mortality
;
Parasitemia
;
Plasmodium
;
Plasmodium berghei
;
Vascular Endothelial Growth Factor A

Result Analysis
Print
Save
E-mail