1.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
2.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
3.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
4.Trends in Artificial Intelligence Applications in Clinical Trials: An analysis of ClinicalTrials.gov
Jeong Min GO ; Ji Yeon LEE ; Yun-Kyoung SONG ; Jae Hyun KIM
Korean Journal of Clinical Pharmacy 2024;34(2):134-139
Background:
Increasing numbers of studies and research about artificial intelligence (AI) and machine learning (ML) have led to their application in clinical trials. The purpose of this study is to analyze computer-based new technologies (AI/ML) applied on clini-cal trials registered on ClinicalTrials.gov to elucidate current usage of these technologies.
Methods:
As of March 1st, 2023, protocols listed on ClinicalTrials.gov that claimed to use AI/ML and included at least one of the following interventions—Drug, Biological, Dietary Supplement, or Combination Product—were selected. The selected protocols were classified according to their context of use: 1) drug discovery; 2) toxicity prediction; 3) enrichment; 4) risk stratification/management; 5) dose selection/optimization; 6) adherence; 7) synthetic control; 8) endpoint assessment; 9) postmarketing surveillance; and 10) drug selection.
Results
The applications of AI/ML were explored in 131 clinical trial protocols. The areas where AI/ML was most frequently utilized in clinical trials included endpoint assessment (n=80), followed by dose selection/optimization (n=15), risk stratification/management (n=13), drug discovery (n=4), adherence (n=4), drug selection (n=1) and enrichment (n=1). Conclusion: The most frequent application of AI/ML in clinical trials is in the fields of endpoint assessment, where the utilization is primarily focuses on the diagnosis of disease by imag-ing or video analyses. The number of clinical trials using artificial intelligence will increase as the technology continues to developrapidly, making it necessary for regulatory associates to establish proper regulations for these clinical trials.
5.Trends in Artificial Intelligence Applications in Clinical Trials: An analysis of ClinicalTrials.gov
Jeong Min GO ; Ji Yeon LEE ; Yun-Kyoung SONG ; Jae Hyun KIM
Korean Journal of Clinical Pharmacy 2024;34(2):134-139
Background:
Increasing numbers of studies and research about artificial intelligence (AI) and machine learning (ML) have led to their application in clinical trials. The purpose of this study is to analyze computer-based new technologies (AI/ML) applied on clini-cal trials registered on ClinicalTrials.gov to elucidate current usage of these technologies.
Methods:
As of March 1st, 2023, protocols listed on ClinicalTrials.gov that claimed to use AI/ML and included at least one of the following interventions—Drug, Biological, Dietary Supplement, or Combination Product—were selected. The selected protocols were classified according to their context of use: 1) drug discovery; 2) toxicity prediction; 3) enrichment; 4) risk stratification/management; 5) dose selection/optimization; 6) adherence; 7) synthetic control; 8) endpoint assessment; 9) postmarketing surveillance; and 10) drug selection.
Results
The applications of AI/ML were explored in 131 clinical trial protocols. The areas where AI/ML was most frequently utilized in clinical trials included endpoint assessment (n=80), followed by dose selection/optimization (n=15), risk stratification/management (n=13), drug discovery (n=4), adherence (n=4), drug selection (n=1) and enrichment (n=1). Conclusion: The most frequent application of AI/ML in clinical trials is in the fields of endpoint assessment, where the utilization is primarily focuses on the diagnosis of disease by imag-ing or video analyses. The number of clinical trials using artificial intelligence will increase as the technology continues to developrapidly, making it necessary for regulatory associates to establish proper regulations for these clinical trials.
6.Trends in Artificial Intelligence Applications in Clinical Trials: An analysis of ClinicalTrials.gov
Jeong Min GO ; Ji Yeon LEE ; Yun-Kyoung SONG ; Jae Hyun KIM
Korean Journal of Clinical Pharmacy 2024;34(2):134-139
Background:
Increasing numbers of studies and research about artificial intelligence (AI) and machine learning (ML) have led to their application in clinical trials. The purpose of this study is to analyze computer-based new technologies (AI/ML) applied on clini-cal trials registered on ClinicalTrials.gov to elucidate current usage of these technologies.
Methods:
As of March 1st, 2023, protocols listed on ClinicalTrials.gov that claimed to use AI/ML and included at least one of the following interventions—Drug, Biological, Dietary Supplement, or Combination Product—were selected. The selected protocols were classified according to their context of use: 1) drug discovery; 2) toxicity prediction; 3) enrichment; 4) risk stratification/management; 5) dose selection/optimization; 6) adherence; 7) synthetic control; 8) endpoint assessment; 9) postmarketing surveillance; and 10) drug selection.
Results
The applications of AI/ML were explored in 131 clinical trial protocols. The areas where AI/ML was most frequently utilized in clinical trials included endpoint assessment (n=80), followed by dose selection/optimization (n=15), risk stratification/management (n=13), drug discovery (n=4), adherence (n=4), drug selection (n=1) and enrichment (n=1). Conclusion: The most frequent application of AI/ML in clinical trials is in the fields of endpoint assessment, where the utilization is primarily focuses on the diagnosis of disease by imag-ing or video analyses. The number of clinical trials using artificial intelligence will increase as the technology continues to developrapidly, making it necessary for regulatory associates to establish proper regulations for these clinical trials.
7.Trends in Artificial Intelligence Applications in Clinical Trials: An analysis of ClinicalTrials.gov
Jeong Min GO ; Ji Yeon LEE ; Yun-Kyoung SONG ; Jae Hyun KIM
Korean Journal of Clinical Pharmacy 2024;34(2):134-139
Background:
Increasing numbers of studies and research about artificial intelligence (AI) and machine learning (ML) have led to their application in clinical trials. The purpose of this study is to analyze computer-based new technologies (AI/ML) applied on clini-cal trials registered on ClinicalTrials.gov to elucidate current usage of these technologies.
Methods:
As of March 1st, 2023, protocols listed on ClinicalTrials.gov that claimed to use AI/ML and included at least one of the following interventions—Drug, Biological, Dietary Supplement, or Combination Product—were selected. The selected protocols were classified according to their context of use: 1) drug discovery; 2) toxicity prediction; 3) enrichment; 4) risk stratification/management; 5) dose selection/optimization; 6) adherence; 7) synthetic control; 8) endpoint assessment; 9) postmarketing surveillance; and 10) drug selection.
Results
The applications of AI/ML were explored in 131 clinical trial protocols. The areas where AI/ML was most frequently utilized in clinical trials included endpoint assessment (n=80), followed by dose selection/optimization (n=15), risk stratification/management (n=13), drug discovery (n=4), adherence (n=4), drug selection (n=1) and enrichment (n=1). Conclusion: The most frequent application of AI/ML in clinical trials is in the fields of endpoint assessment, where the utilization is primarily focuses on the diagnosis of disease by imag-ing or video analyses. The number of clinical trials using artificial intelligence will increase as the technology continues to developrapidly, making it necessary for regulatory associates to establish proper regulations for these clinical trials.
8.Co-occurrence of both maternally inherited neurofibromatosis type 1 and Lesch-Nyhan disease in a child with severe neurodevelopmental impairment
Jae Hun YUN ; Yong Hee HONG ; Go Hun SEO ; Young-Lim SHIN
Journal of Genetic Medicine 2022;19(2):94-99
Lesch-Nyhan disease (LND) is a rare X-linked recessive inherited purine metabolic disorder that accompanies neurodevelopmental problems. Neurofibromatosis type 1 (NF1) is a relatively common autosomal dominant inherited genetic disorder characterized by tumors in various systems. Some children with NF1 also accompanies neurodevelopmental problems.Here, we describe a 5-year-old boy with a maternally inherited pathogenic variant in NF-1 and hypoxanthine-guanine phosphoribosyltransferase (HPRT ). He was referred for severe neurodevelopmental impairment and hyperuricemia. His mother was diagnosed with NF1 and the patient was also suspected of having NF1 because of cafe au lait macules. He had dystonia, rigidity, cognitive deficit, and speech/language impairment. Serum and urine uric acid concentrations were elevated. He had more severe neurodevelopmental delay than patients with only NF1, so his clinical symptoms could not be fully understood by the disease alone. To find the cause of his neurologic symptoms and hyperuricemia, the patient and his mother underwent a whole-exome sequencing test. As a result, the pathogenic variant c.151C>T (p.Arg51Ter) in HPRT1 was identified as hemizygote in the patient and heterozygote in his mother. The pathogenic variant c.7682C>G (p.Ser2561Ter) in NF-1 was identified as heterozygotes in both of them. Although the clinical symptoms of both diseases were overlapping and complicated, genetic testing was helpful for accurate diagnosis and treatment. Therefore, we suggest to consider preemptive genetic evaluation if there are symptoms not sufficiently explained by known existing diseases. And it is considered valuable to review this rare case to understand the clinical course and possible synergic effects of these diseases.
9.A single-arm phase II study of olaparib maintenance with pembrolizumab and bevacizumab in BRCA non-mutated patients with platinum-sensitive recurrent ovarian cancer (OPEB-01)
Yong Jae LEE ; Myong Cheol LIM ; Byoung-Gie KIM ; Natalie YL NGOI ; Chel Hun CHOI ; Sang-Yoon PARK ; David SP TAN ; Yunjung GO ; Jung-Yun LEE
Journal of Gynecologic Oncology 2021;32(2):e31-
Background:
The optimal treatment of BRCA wild-type patients with platinum-sensitive recurrent ovarian cancer remains unknown. Recently, there is an increase in the evidence to support the role of the combination of a poly(adenosine diphosphate-ribose) polymerase inhibitor, anti-angiogenic agents, and immunotherapy as maintenance therapy in BRCA wild-type patients with platinum-sensitive recurrence. We hypothesized that adding pembrolizumab and bevacizumab to olaparib maintenance can increase progression-free survival (PFS) in BRCA wild-type patients with platinum-sensitive recurrent ovarian cancer.
Methods
BRCA wild-type patients who received two previous courses of platinum-containing therapy, achieved complete or partial response to last treatment, and the treatment-free interval is >6 months after the penultimate platinum-based chemotherapy offered olaparib maintenance with pembrolizumab and bevacizumab. Forty-four patients will be included from 4 sites across Singapore and Korea. The primary endpoint of the study is 6-month PFS rate.
10.Involvement of the TNF-α Pathway in TKI Resistance and Suggestion of TNFR1 as a Predictive Biomarker for TKI Responsiveness in Clear Cell Renal Cell Carcinoma
Hee Sang HWANG ; Yun Yong PARK ; Su Jin SHIN ; Heounjeong GO ; Ja Min PARK ; Sun Young YOON ; Jae Lyun LEE ; Yong Mee CHO
Journal of Korean Medical Science 2020;35(5):31-
10% of labeled tumor cells) of TNF receptor 1 (TNFR1), the protein product of TNFRSF1A gene, was correlated with sarcomatoid dedifferentiation and was an independent predictive factor of clinically unfavorable response and shorter survivals in separated TKI-treated ccRCC cohort.CONCLUSION: TNF-α signaling may play a role in TKI resistance, and TNFR1 expression may serve as a predictive biomarker for clinically unfavorable TKI responses in ccRCC.]]>
Biomarkers
;
Carcinoma, Renal Cell
;
Cohort Studies
;
Dataset
;
Drug Resistance
;
Gene Expression
;
Gene Expression Profiling
;
Heterografts
;
Humans
;
Immunohistochemistry
;
Protein-Tyrosine Kinases
;
Receptors, Tumor Necrosis Factor
;
Receptors, Tumor Necrosis Factor, Type I
;
Tumor Necrosis Factor-alpha

Result Analysis
Print
Save
E-mail