1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
2.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
3.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.
4.Deep Learning Technology for Classification of Thyroid Nodules Using Multi-View Ultrasound Images: Potential Benefits and Challenges in Clinical Application
Jinyoung KIM ; Min-Hee KIM ; Dong-Jun LIM ; Hankyeol LEE ; Jae Jun LEE ; Hyuk-Sang KWON ; Mee Kyoung KIM ; Ki-Ho SONG ; Tae-Jung KIM ; So Lyung JUNG ; Yong Oh LEE ; Ki-Hyun BAEK
Endocrinology and Metabolism 2025;40(2):216-224
Background:
This study aimed to evaluate the applicability of deep learning technology to thyroid ultrasound images for classification of thyroid nodules.
Methods:
This retrospective analysis included ultrasound images of patients with thyroid nodules investigated by fine-needle aspiration at the thyroid clinic of a single center from April 2010 to September 2012. Thyroid nodules with cytopathologic results of Bethesda category V (suspicious for malignancy) or VI (malignant) were defined as thyroid cancer. Multiple deep learning algorithms based on convolutional neural networks (CNNs) —ResNet, DenseNet, and EfficientNet—were utilized, and Siamese neural networks facilitated multi-view analysis of paired transverse and longitudinal ultrasound images.
Results:
Among 1,048 analyzed thyroid nodules from 943 patients, 306 (29%) were identified as thyroid cancer. In a subgroup analysis of transverse and longitudinal images, longitudinal images showed superior prediction ability. Multi-view modeling, based on paired transverse and longitudinal images, significantly improved the model performance; with an accuracy of 0.82 (95% confidence intervals [CI], 0.80 to 0.86) with ResNet50, 0.83 (95% CI, 0.83 to 0.88) with DenseNet201, and 0.81 (95% CI, 0.79 to 0.84) with EfficientNetv2_ s. Training with high-resolution images obtained using the latest equipment tended to improve model performance in association with increased sensitivity.
Conclusion
CNN algorithms applied to ultrasound images demonstrated substantial accuracy in thyroid nodule classification, indicating their potential as valuable tools for diagnosing thyroid cancer. However, in real-world clinical settings, it is important to aware that model performance may vary depending on the quality of images acquired by different physicians and imaging devices.
6.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
7.Deep Learning Technology for Classification of Thyroid Nodules Using Multi-View Ultrasound Images: Potential Benefits and Challenges in Clinical Application
Jinyoung KIM ; Min-Hee KIM ; Dong-Jun LIM ; Hankyeol LEE ; Jae Jun LEE ; Hyuk-Sang KWON ; Mee Kyoung KIM ; Ki-Ho SONG ; Tae-Jung KIM ; So Lyung JUNG ; Yong Oh LEE ; Ki-Hyun BAEK
Endocrinology and Metabolism 2025;40(2):216-224
Background:
This study aimed to evaluate the applicability of deep learning technology to thyroid ultrasound images for classification of thyroid nodules.
Methods:
This retrospective analysis included ultrasound images of patients with thyroid nodules investigated by fine-needle aspiration at the thyroid clinic of a single center from April 2010 to September 2012. Thyroid nodules with cytopathologic results of Bethesda category V (suspicious for malignancy) or VI (malignant) were defined as thyroid cancer. Multiple deep learning algorithms based on convolutional neural networks (CNNs) —ResNet, DenseNet, and EfficientNet—were utilized, and Siamese neural networks facilitated multi-view analysis of paired transverse and longitudinal ultrasound images.
Results:
Among 1,048 analyzed thyroid nodules from 943 patients, 306 (29%) were identified as thyroid cancer. In a subgroup analysis of transverse and longitudinal images, longitudinal images showed superior prediction ability. Multi-view modeling, based on paired transverse and longitudinal images, significantly improved the model performance; with an accuracy of 0.82 (95% confidence intervals [CI], 0.80 to 0.86) with ResNet50, 0.83 (95% CI, 0.83 to 0.88) with DenseNet201, and 0.81 (95% CI, 0.79 to 0.84) with EfficientNetv2_ s. Training with high-resolution images obtained using the latest equipment tended to improve model performance in association with increased sensitivity.
Conclusion
CNN algorithms applied to ultrasound images demonstrated substantial accuracy in thyroid nodule classification, indicating their potential as valuable tools for diagnosing thyroid cancer. However, in real-world clinical settings, it is important to aware that model performance may vary depending on the quality of images acquired by different physicians and imaging devices.
9.Deep Learning Technology for Classification of Thyroid Nodules Using Multi-View Ultrasound Images: Potential Benefits and Challenges in Clinical Application
Jinyoung KIM ; Min-Hee KIM ; Dong-Jun LIM ; Hankyeol LEE ; Jae Jun LEE ; Hyuk-Sang KWON ; Mee Kyoung KIM ; Ki-Ho SONG ; Tae-Jung KIM ; So Lyung JUNG ; Yong Oh LEE ; Ki-Hyun BAEK
Endocrinology and Metabolism 2025;40(2):216-224
Background:
This study aimed to evaluate the applicability of deep learning technology to thyroid ultrasound images for classification of thyroid nodules.
Methods:
This retrospective analysis included ultrasound images of patients with thyroid nodules investigated by fine-needle aspiration at the thyroid clinic of a single center from April 2010 to September 2012. Thyroid nodules with cytopathologic results of Bethesda category V (suspicious for malignancy) or VI (malignant) were defined as thyroid cancer. Multiple deep learning algorithms based on convolutional neural networks (CNNs) —ResNet, DenseNet, and EfficientNet—were utilized, and Siamese neural networks facilitated multi-view analysis of paired transverse and longitudinal ultrasound images.
Results:
Among 1,048 analyzed thyroid nodules from 943 patients, 306 (29%) were identified as thyroid cancer. In a subgroup analysis of transverse and longitudinal images, longitudinal images showed superior prediction ability. Multi-view modeling, based on paired transverse and longitudinal images, significantly improved the model performance; with an accuracy of 0.82 (95% confidence intervals [CI], 0.80 to 0.86) with ResNet50, 0.83 (95% CI, 0.83 to 0.88) with DenseNet201, and 0.81 (95% CI, 0.79 to 0.84) with EfficientNetv2_ s. Training with high-resolution images obtained using the latest equipment tended to improve model performance in association with increased sensitivity.
Conclusion
CNN algorithms applied to ultrasound images demonstrated substantial accuracy in thyroid nodule classification, indicating their potential as valuable tools for diagnosing thyroid cancer. However, in real-world clinical settings, it is important to aware that model performance may vary depending on the quality of images acquired by different physicians and imaging devices.
10.Characteristics and Prevalence of Sequelae after COVID-19: A Longitudinal Cohort Study
Se Ju LEE ; Yae Jee BAEK ; Su Hwan LEE ; Jung Ho KIM ; Jin Young AHN ; Jooyun KIM ; Ji Hoon JEON ; Hyeri SEOK ; Won Suk CHOI ; Dae Won PARK ; Yunsang CHOI ; Kyoung-Ho SONG ; Eu Suk KIM ; Hong Bin KIM ; Jae-Hoon KO ; Kyong Ran PECK ; Jae-Phil CHOI ; Jun Hyoung KIM ; Hee-Sung KIM ; Hye Won JEONG ; Jun Yong CHOI
Infection and Chemotherapy 2025;57(1):72-80
Background:
The World Health Organization has declared the end of the coronavirus disease 2019 (COVID-19) public health emergency. However, this did not indicate the end of COVID-19. Several months after the infection, numerous patients complain of respiratory or nonspecific symptoms; this condition is called long COVID. Even patients with mild COVID-19 can experience long COVID, thus the burden of long COVID remains considerable. Therefore, we conducted this study to comprehensively analyze the effects of long COVID using multi-faceted assessments.
Materials and Methods:
We conducted a prospective cohort study involving patients diagnosed with COVID-19 between February 2020 and September 2021 in six tertiary hospitals in Korea. Patients were followed up at 1, 3, 6, 12, 18, and 24 months after discharge. Long COVID was defined as the persistence of three or more COVID-19-related symptoms. The primary outcome of this study was the prevalence of long COVID after the period of COVID-19.
Results:
During the study period, 290 patients were enrolled. Among them, 54.5 and 34.6% experienced long COVID within 6 months and after more than 18 months, respectively. Several patients showed abnormal results when tested for post-traumatic stress disorder (17.4%) and anxiety (31.9%) after 18 months. In patients who underwent follow-up chest computed tomography 18 months after COVID-19, abnormal findings remained at 51.9%. Males (odds ratio [OR], 0.17; 95% confidence interval [CI], 0.05–0.53; P=0.004) and elderly (OR, 1.04; 95% CI, 1.00–1.09; P=0.04) showed a significant association with long COVID after 12–18 months in a multivariable logistic regression analysis.
Conclusion
Many patients still showed long COVID after 18 months post SARS-CoV-2 infection. When managing these patients, the assessment of multiple aspects is necessary.

Result Analysis
Print
Save
E-mail