1.Manipulation of isocitrate dehydrogenase genes affects the anti-autolytic ability of lager yeast.
Kejia YE ; Haobo WU ; Chunfeng LIU ; Chengtuo NIU ; Feiyun ZHENG ; Qi LI ; Jinjing WANG
Chinese Journal of Biotechnology 2023;39(8):3451-3463
Yeast autolysis affects the flavor and quality of beer. The regulation of yeast autolysis is a need for industrial beer production. Previous studies on brewer's yeast autolysis showed that the citric acid cycle-related genes had a great influence on yeast autolysis. To explore the contribution of isocitrate dehydrogenase genes in autolysis, the IDP1 and IDP2 genes were destroyed or overexpressed in typical lager yeast Pilsner. The destruction of IDP1 gene improved the anti-autolytic ability of yeast, and the anti-autolytic index after 96 h autolysis was 8.40, 1.5 times higher than that of the original strain. The destruction of IDP1 gene increased the supply of nicotinamide adenine dinucleotide phosphate (NADPH) and the NADPH/NADP+ ratio was 1.94. After fermentation, intracellular ATP level was 1.8 times higher than that of the original strain, while reactive oxygen species (ROS) was reduced by 10%. The destruction of IDP2 gene resulted in rapid autolysis and a decrease in the supply of NADPH. Anti-autolytic index after 96 h autolysis was 4.03 and the NADPH/NADP+ ratio was 0.89. After fermentation, intracellular ATP level was reduced by 8% compared with original strain, ROS was 1.3 times higher than that of the original strain. The results may help understand the regulation mechanism of citric acid cycle-related genes on yeast autolysis and provide a basis for the selection of excellent yeast with controllable anti-autolytic performance.
Humans
;
Isocitrate Dehydrogenase/genetics*
;
NADP
;
Reactive Oxygen Species
;
Autolysis
;
Adenosine Triphosphate
2.Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma.
Feng TANG ; Zhiyong PAN ; Yi WANG ; Tian LAN ; Mengyue WANG ; Fengping LI ; Wei QUAN ; Zhenyuan LIU ; Zefen WANG ; Zhiqiang LI
Neuroscience Bulletin 2022;38(9):1069-1084
Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme in the tricarboxylic acid cycle (TAC). The high mutation frequency of the IDH gene plays a complicated role in gliomas. In addition to affecting gliomas directly, mutations in IDH can also alter their immune microenvironment and can change immune-cell function in direct and indirect ways. IDH mutations mediate immune-cell infiltration and function by modulating immune-checkpoint gene expression and chemokine secretion. In addition, IDH mutation-derived D2-hydroxyglutarate can be absorbed by surrounding immune cells, also affecting their functioning. In this review, we summarize current knowledge about the effects of IDH mutations as well as other gene mutations on the immune microenvironment of gliomas. We also describe recent preclinical and clinical data related to IDH-mutant inhibitors for the treatment of gliomas. Finally, we discuss different types of immunotherapy and the immunotherapeutic potential of IDH mutations in gliomas.
Brain Neoplasms/therapy*
;
Glioma/therapy*
;
Humans
;
Immunotherapy
;
Isocitrate Dehydrogenase/genetics*
;
Mutation/genetics*
;
Tumor Microenvironment
4.Coexisting Mutations in IDH1/2-Mutated Acute Myeloid Leukemia.
Zhu-Xia JIA ; Hong-Ying CHAO ; Jie LIU ; Xiao-Hui CAI ; Wei QIN ; Pin WU ; Xu-Zhang LU
Journal of Experimental Hematology 2019;27(5):1440-1448
OBJECTIVE:
To explore the coexisting mutations in IDH-mutated acute myeloid leukemia(AML) and its relation with partial clinical parametrs.
METHODS:
The exon 4 mutation of IDH1/2 gene was screened by using genome DNA-PCR combined with sanger sequencing, 51 targeted gene mutations in the patients with IDH1/2 mutation were detected by using high throughput DNA sequencing combined with sanger sequencing.
RESULTS:
Among 358 patients, the IDH1/2 mutation was found in 46 cases including IDH1 mutation in 35 cases and IDH2 mutation in 11 cases, 97.87%(45/46) patients with IDH1/2 mutation simultaneously carried other gene mutations including 8(17.8%) cases with mutation of double gene, 17(37.8%) cases with mutation of 3 genes and 20(44.4%) cases with mutation of ≥ 4 genes. The mutation frequency of each patient averaged 3.52 times. In mutation of accompanied genes, the common genes were NPM1(n=29, 63.0%), next DNMT3A(n=25, 54.3%), FLT3-ITD(n=7, 15.2%), TET2(n=5, 10.9%) and NRAS(n=5, 10.9%). The average WBC level of patients with NPM1 mutation in IDH1 mutation group was higher than that of patients in wild type group(P<0.05). The complete remission (CR) rate of patients with DNMT3A mutation was significant lower than that of patients with wild type (30% vs 80%, P<0.01). The presence of ≥ 4 mutations was found to be significantly associated with higher white blood level than that in the patients with double mutations(P<0.05).
CONCLUSION
More than 95% AML patients with IDH1/2 mutation commonly show additional mutations. The number and the type of IDH coexisting mutations have certain effect on the clinical features and CR rate.
Exons
;
Humans
;
Isocitrate Dehydrogenase
;
genetics
;
Leukemia, Myeloid, Acute
;
genetics
;
Mutation
;
Prognosis
;
Remission Induction
5.Effects of IDH2 Gene Mutation on Clinical Characteristics and Prognostic of Patients with Acute Myeloid Leukemia.
Li-Qing LUO ; Zhen-Yi PENG ; Xiao LIU ; Wen-Zheng YU
Journal of Experimental Hematology 2019;27(4):1077-1082
OBJECTIVE:
To analyze the prevalence, clinical characteristics and prognostic significance of the isocitrate dehydrogenase 2(IDH2) mutations in patients with acute myeloid leukemia(AML).
METHODS:
The bone marrow samples of 223 patients with newly diagnosed AML confirmed by MICM typing from January 2015 to October 2018 were collected. The mutation of exon 4 of IDH2 gene was detected by direct sequancing of PCR product; the incidence and types of IDH2 gene mutation in AML patients were analyzed; the clinical characteristics of AML patients with IDH2 gene mutation were analyzed and the therapeutic efficacy for these patients was evaluated.
RESULTS:
In a cohort of 223 AML patients, mutations were detected in 23(10.31%) patients, among them, 15 with R140Q mutations(65.22%) , 6 with R172K mutations(26.09%) and 2 with R140W mutations(8.70%). The median age in IDH2 mutated group was older than that in non.mutated group(P=0.008). The platelet level at initial diagnosis in IDH2 mutated group was higher than that in non.mutated group(P=0.010). There was no significant statistical difference between IDH2 mutated group and non.mutated group in FAB subtypes of AML(P>0.05). But the rate of IDH2 mutation in M4 and M5 was higher. The rate of IDH2 mutations was higher in AML with normal karyotype and in AML with NPM1 mutations. R140Q mutations associated with NPM1 mutations(χ=8.481,P=0.004), but R172K mutations not associated with NPM1 mutation(P>0.05). IDH2 mutated patients had a lower complete remission rate than non.mutated patients(57.14% vs 80.46%, χ=5.927,P=0.015). The complete remission rate of R140Q mutated patients was not significantly statistically different from non.mutated patients. The complete remission rate of R172K mutated patients was very significantly lower than non.mutated patients(χ=7.734,P=0.005). In the patients without NPM1 mutation, the 2 years overall survival in IDH2 mutated group was lower than in non.mutated group(36.36% vs 66.40%,χ=3.958,P=0.047), the 2 years overall survival of R172K mutated group was significantly lower than non.mutated group(although P>0.05). In all patients, the 2 years overall survival between IDH2 mutated group and non.mutated group was not statistically different(50% vs 66.88%,P>0.05), the 2 years overall survival of R172K mutated group was significantly lower than non.mutated group(although P>0.05). In the patients with normal karyotype or with mutated NPM1, the 2 years overall survival between IDH2 mutated group and non.mutated group was not statistically different(P>0.05).
CONCLUSION
IDH2 gene mutations are more common in AML patients at older age, higher platelets level and normal karyotype. The rate of IDH2 mutation in M4 and M5 is higher. IDH2 gene mutations associate with NPMl gene mutations, but R172K mutations not associates with NPM1mutation. IDH2 gene mutations associate with prognosis of AML patients, R140Q mutations have no effect on prognosis of patients, but R172K mutations may be the molecular markers for poor prognosis in AML patients.
Genotype
;
Humans
;
Isocitrate Dehydrogenase
;
genetics
;
Leukemia, Myeloid, Acute
;
Mutation
;
Prognosis
6.Global gene expression analysis in liver of db/db mice treated with catalpol.
Jing LIU ; He-Ran ZHANG ; Yan-Bao HOU ; Xiao-Long JING ; Xin-Yi SONG ; Xiu-Ping SHEN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):590-598
Catalpol, a major bioactive component from Rehmannia glutinosa, which has been used to treat diabetes. The present study was designed to elucidate the anti-diabetic effect and mechanism of action for catalpol in db/db mice. The db/db mice were randomly divided into six groups (10/group) according to their blood glucose levels: db/db control, metformin (positive control), and four dose levels of catalpol treatment (25, 50, 100, and 200 mg·kg), and 10 db/m mice were used as the normal control. All the groups were administered orally for 8 weeks. The levels of fasting blood glucose (FBG), random blood glucose (RBG), glucose tolerance, insulin tolerance, and glycated serum protein (GSP) and the globe gene expression in liver tissues were analyzed. Our results showed that catalpol treatment obviously reduced water intake and food intake in a dose-dependent manner. Catalpol treatment also remarkably reduce fasting blood glucose (FBG) and random blood glucose (RBG) in a dose-dependent manner. The RBG-lowering effect of catalpol was better than that of metformin. Furthermore, catalpol significantly improved glucose tolerance and insulin tolerance via increasing insulin sensitivity. Catalpol treatment significantly decreased GSP level. The comparisons of gene expression in liver tissues among normal control mice, db/db mice and catalpol treated mice (200 and 100 mg·kg) indicated that there were significant increases in the expressions of 287 genes, whichwere mainly involved in lipid metabolism, response to stress, energy metabolism, and cellular processes, and significant decreases in the expressions of 520 genes, which were mainly involved in cell growth, death, immune system, and response to stress. Four genes expressed differentially were linked to glucose metabolism or insulin signaling pathways, including Irs1 (insulin receptor substrate 1), Idh2 (isocitrate dehydrogenase 2 (NADP), mitochondrial), G6pd2 (glucose-6-phosphate dehydrogenase 2), and SOCS3 (suppressor of cytokine signaling 3). In conclusion, catalpol ecerted significant hypoglycemic effect and remarkable therapeutic effect in db/db mice via modulating various gene expressions.
Animals
;
Blood Glucose
;
metabolism
;
Diabetes Mellitus, Experimental
;
drug therapy
;
genetics
;
metabolism
;
Disease Models, Animal
;
Dose-Response Relationship, Drug
;
Drugs, Chinese Herbal
;
administration & dosage
;
analysis
;
Gene Expression
;
drug effects
;
Glucosephosphate Dehydrogenase
;
genetics
;
metabolism
;
Humans
;
Hypoglycemic Agents
;
administration & dosage
;
Insulin
;
metabolism
;
Insulin Receptor Substrate Proteins
;
genetics
;
metabolism
;
Iridoid Glucosides
;
administration & dosage
;
analysis
;
Isocitrate Dehydrogenase
;
genetics
;
metabolism
;
Liver
;
drug effects
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Rehmannia
;
chemistry
;
Suppressor of Cytokine Signaling 3 Protein
;
genetics
;
metabolism
7.Evolving Molecular Genetics of Glioblastoma.
Qiu-Ju LI ; Jin-Quan CAI ; Cheng-Yin LIU
Chinese Medical Journal 2016;129(4):464-471
OBJECTIVETo summary the recent advances in molecular research of glioblastoma (GBM) and current trends in personalized therapy of this disease.
DATA SOURCESData cited in this review were obtained mainly from PubMed in English up to 2015, with keywords "molecular", "genetics", "GBM", "isocitrate dehydrogenase", "telomerase reverse transcriptase", "epidermal growth factor receptor", "PTPRZ1-MET", and "clinical treatment".
STUDY SELECTIONArticles regarding the morphological pathology of GBM, the epidemiology of GBM, genetic alteration of GBM, and the development of treatment for GBM patients were identified, retrieved, and reviewed.
RESULTSThere is a large amount of data supporting the view that these recurrent genetic aberrations occur in a specific context of cellular origin, co-oncogenic hits and are present in distinct patient populations. Primary and secondary GBMs are distinct disease entities that affect different age groups of patients and develop through distinct genetic aberrations. These differences are important, especially because they may affect sensitivity to radio- and chemo-therapy and should thus be considered in the identification of targets for novel therapeutic approaches.
CONCLUSIONThis review highlights the molecular and genetic alterations of GBM, indicating that they are of potential value in the diagnosis and treatment for patients with GBM.
Brain Neoplasms ; genetics ; pathology ; Glioblastoma ; genetics ; pathology ; Humans ; Isocitrate Dehydrogenase ; genetics ; Mutation ; PTEN Phosphohydrolase ; genetics ; Receptor, Epidermal Growth Factor ; genetics ; Telomerase ; genetics
8.Immunohistochemical Analysis of ATRX, IDH1 and p53 in Glioblastoma and Their Correlations with Patient Survival.
Ajay CHAURASIA ; Sung Hye PARK ; Jeong Wook SEO ; Chul Kee PARK
Journal of Korean Medical Science 2016;31(8):1208-1214
Glioblastoma (GBM) can be classified into molecular subgroups, on the basis of biomarker expression. Here, we classified our cohort of 163 adult GBMs into molecular subgroups according to the expression of proteins encoded by genes of alpha thalassemia/mental retardation syndrome X-linked (ATRX), isocitrate dehydrogenase (IDH) and TP53. We focused on the survival rate of molecular subgroups, depending on each and various combination of these biomarkers. ATRX, IDH1 and p53 protein expression were evaluated immunohistochemically and Kaplan-Meier analysis were carried out in each group. A total of 15.3% of enrolled GBMs demonstrated loss of ATRX expression (ATRX-), 10.4% expressed an aberrant IDH1 R132H protein (IDH1+), and 48.4% exhibited p53 overexpression (p53+). Survival differences were statistically significant when single protein expression or different combinations of expression of these proteins were analyzed. In conclusion, in the case of single protein expression, the patients with each IDH1+, or ATRX-, or p53- GBMs showed better survival than patients with counterparts protein expressed GBMs. In the case of double protein pairs, the patients with ATRX-/p53-, ATRX-/IDH1+, and IDH1+/p53- GBMs revealed better survival than the patients with GBMs with the remained pairs. In the case of triple protein combinations, the patients with ATRX-/p53-/IDH+ showed statistically significant survival gain than the patients with remained combination of proteins-expression status. Therefore, these three biomarkers, individually and as a combination, can stratify GBMs into prognostically relevant subgroups and have strong prognostic values in adult GBMs.
Adult
;
Aged
;
Biomarkers, Tumor/metabolism
;
Brain Neoplasms/*diagnosis/metabolism/mortality
;
DNA Helicases/*metabolism
;
Disease-Free Survival
;
Glioblastoma/*diagnosis/metabolism/mortality
;
Humans
;
Immunohistochemistry
;
Isocitrate Dehydrogenase/*metabolism
;
Kaplan-Meier Estimate
;
Middle Aged
;
Nuclear Proteins/*metabolism
;
Retrospective Studies
;
Tumor Suppressor Protein p53/genetics/*metabolism
;
Young Adult
9.Research Advances of IDH2 Gene Mutation in Acute Myeloid Leukemia.
Journal of Experimental Hematology 2016;24(2):632-636
Acute myeloid leukemia (AML) is a malignant clonal hematologic disease from hematopoietic stem and progenitor cells. The isocitrate dehychogenase 2 (IDH2) gene mutation has been recently found, which may be associated with the course of AML. The incidence of IDH2 gene mutation in the patients with acute myeloid leukemia is high, especially in the AML patients with normal karyotype. Different subtypes of IDH2 mutation, or companing other molecular biology, will make different influence on clinical features and progress of patients with AML. IDH2 mutation is stable, which can be used as the test sign of AML and minimal residual disease (MRD), and for guiding the clinical treatment and predicting the progress. In this article, the research progress of IDH2 mutation in acute myeloid leukemia is reviewed.
Humans
;
Isocitrate Dehydrogenase
;
genetics
;
Leukemia, Myeloid, Acute
;
genetics
;
Mutation
;
Neoplasm, Residual
;
Prognosis
10.Clinical characteristics of newly diagnosed acute myeloid leukemia patients with NPM1 mutation.
Hui WEI ; Yi-Qun ZHANG ; Dong LIN ; Ying WANG ; Chun-Lin ZHOU ; Bing-Cheng LIU ; Wei LI ; Qing RAO ; Min WANG ; Ying-Chang MI ; Jian-Xiang WANG
Journal of Experimental Hematology 2014;22(1):11-15
The purpose of this study was to investigate the clinical characteristics of newly diagnosed acute myeloid leukemia (AML) patients with NPM1 mutation in exon 12 and to explore the relationship between NPM1 mutation and FLT3-ITD, IDH1 mutation. The AML clinical data and bone marrow samples of patients were collected. The diagnosis and classification were based on WHO criteria. The genomic DNA was extracted and NPM1 mutation was detected by sequencing after PCR. The specimens of 389 AML patients were tested. The results showed that the NPM1 mutation was found in 14.1% samples (55/389). The incidence of FLT3-ITD mutation was 14.7% (57/389) . The incidence of IDH1 mutation was 6.4% (25/389) . NPM1 mutation was not detected in AML with AML1-ETO, PML-RARA or CBF-MYH11 fusion genes. The incidences of FLT3-ITD and IDH1 mutation were 29.1% and 12.7% respectively in AML with NPM1 mutation. The incidences of FLT3-ITD and IDH1 mutation were 12.3% and 5.4% respectively in AML without NPM1 mutation. The incidences of FLT3-ITD and IDH1 mutation were significantly higher in AML with NPM1 mutation than that in AML without NPM1 mutation. The incidence of NPM1 mutation in normal karyotype AML was 26.5% (35/132) which significantly higher than that in other AML. The AML with NPM1 mutation characterized by older age, high platelet number, higher incidence in AML-M5, lower CD34 positive cells, more possible co-existence with FLT3-ITD and IDH1 mutation and other clinical features. The complete remission rate after one cycle of induction chemotherapy was 69.8% in AML without NPM1 mutation. The complete remission rate after one cycle of induction chemotherapy was 72.2% in AML with NPM1 mutation, there was no significant difference between them (P = 0.07). It is concluded that AML with NPM1 mutation has distinct clinical features. NPM1 mutation can co-exists with FLT3-ITD and IDH1 mutation, but not with AML1-ETO, PML-RARA or CBF-MYH11 fusion genes.
Adolescent
;
Adult
;
Aged
;
Female
;
Humans
;
Isocitrate Dehydrogenase
;
genetics
;
Leukemia, Myeloid, Acute
;
diagnosis
;
genetics
;
Male
;
Middle Aged
;
Mutation
;
Nuclear Proteins
;
genetics
;
Prognosis
;
Young Adult
;
fms-Like Tyrosine Kinase 3
;
genetics

Result Analysis
Print
Save
E-mail