1.Metabolomics and pharmacokinetics of Corni Fructus in ameliorating myocardial ischemic injury.
Xiang-Feng LIU ; Yu WU ; Chao-Yan YANG ; Hua-Wei LIAO ; Yan-Fen CHEN ; Xin HE ; Ying-Fang WANG ; Jin-Ru LIANG
China Journal of Chinese Materia Medica 2025;50(5):1363-1376
This study aims to investigate the ameliorating effect of Corni Fructus(CF) on the myocardial ischemic injury and the pharmacokinetic properties of characteristic components of CF. The mouse model of isoproterenol-induced myocardial ischemia was established and administrated with the aqueous extract of CF. The general efficacy of CF in ameliorating the myocardial ischemic injury was evaluated based on the cardiac histopathology and the levels of myocardial injury markers: creatine kinase isoenzyme(CK-MB) and cardiac troponin I(cTn-I). The metabolomics analysis was carried out for the heart and serum samples of mice to screen the biomarkers of CF in ameliorating the myocardial ischemic injury and then the predicted biomarkers were submitted to metabolic pathway enrichment. The pharmacokinetic analysis was performed for morroniside, loganin, and cornuside Ⅰ in mouse heart and serum samples to obtain the pharmacokinetic parameters of these components. The pharmacokinetic parameters were then integrated on the basis of self-defined weighting coefficients to simulate an integrated pharmacokinetic profile of CF iridoid glycosides in the heart and serum of the mouse model of myocardial ischemia. The results indicated that CF reduced the pathological damage to cardiac cells and tissue(hematoxylin-eosin staining) and lowered the levels of CK-MB and cTn-I in the serum of the mouse model of myocardial ischemia(P<0.01). Metabolomics analysis screed out 31 endogenous metabolites in the heart and 35 in the serum as biomarkers of CF in ameliorating the myocardial ischemic injury. These biomarkers were altered by modeling and restored by CF. Six metabolic pathways in the heart and 5 in the serum were enriched based on these metabolic markers. The main integrated pharmacokinetic parameters of CF iridoid glycosides were T_(max)=1 h, t_(1/2)=(1.52±0.05) h in the heart and T_(max)=1 h, t_(1/2)=(1.56±0.50) h in the serum. Both concentration-time curves showed a double-peak phenomenon. In conclusion, CF demonstrated the cardioprotective effect by regulating metabolic pathways such as taurine and hypotaurine metabolism, and pantothenic acid and coenzyme A biosynthesis. The integrated pharmacokinetics reflect the general pharmacokinetic properties of characteristic components in CF.
Animals
;
Cornus/chemistry*
;
Mice
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Myocardial Ischemia/metabolism*
;
Humans
;
Troponin I/metabolism*
;
Myocardium/pathology*
;
Disease Models, Animal
;
Biomarkers/metabolism*
;
Creatine Kinase, MB Form/metabolism*
2.Research progress on ferroptosis mediated by microglia in hypoxic-ischemic brain damage.
Tao GUO ; Hanjun ZUO ; Xianfeng KUANG ; Shukun ZHANG ; Bolin CHEN ; Lixing LUO ; Xiao YANG ; Zhao WANG ; Juanjuan LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):552-558
In hypoxic-ischemic brain damage (HIBD), the programmed cell death known as ferroptosis is significantly activated. Microglial cells demonstrate a high level of sensitivity to iron accumulation. Understanding how to regulate the dual role of microglia and transforming the microglial ferroptosis to a moderate and controllable process has considerable implications for the targeted treatment in HIBD. This paper serves as an overview of microglia-mediated ferroptosis in HIBD as a disease model. We discuss various aspects centered around microglia, including pathophysiological mechanisms, polarization and functions of microglia, molecular mechanisms of ferroptosis, signaling pathways, and therapeutic strategies. The review aims to provide a reference for studies of ferroptosis in microglia.
Microglia/physiology*
;
Ferroptosis/physiology*
;
Humans
;
Animals
;
Hypoxia-Ischemia, Brain/pathology*
;
Signal Transduction
3.Effects of Zhuang medicine Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke model rats via the P2X7R/NLRP3 pathway.
Liangji GUO ; Ligui GAN ; Zujie QIN ; Hongli TENG ; Chenglong WANG ; Jiangcun WEI ; Xiaoping MEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):985-991
Objective To explore the effects of Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke (IS) rats via the P2X purinoceptor 7 receptor (P2X7R)/NLR family pyrin domain-containing 3 (NLRP3) pathway. Methods The rats were divided into five groups: the IS group, control group, Shuanglu Tongnao Formula group, P2X7R inhibitor brilliant blue G (BBG) group, and Shuanglu Tongnao Formula combined with P2X7R activator adenosine triphosphate (ATP) group, with 18 rats in each group. Except for the control group, rats in all other groups were used to construct an IS model using the suture method. After successful modeling, the drug was given once a day for 2 weeks. Neurological function scores and cerebral infarction volume ratios were measured in rats. Pathological examination of the ischemic penumbra brain tissue was performed. Immunofluorescence staining was used to quantify the proportions of microglia co-expressing both inducible nitric oxide synthase (iNOS) and ionized calcium-binding adapter molecule 1 (Iba1), as well as arginase 1 (Arg1) and Iba1, in the ischemic penumbra brain tissue. ELISA was used to detect tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin 6 (IL-6) and IL-10 in the ischemic penumbra brain tissue. Western blotting was used to measure P2X7R, NLRP3, and IL-1β proteins in the ischemic penumbra brain tissue. Results Compared with the control group, the IS group showed disordered neuronal arrangement, nuclear condensation, and obvious infiltration of inflammatory cells in the ischemic penumbra; significantly elevated neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with reduced proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. Compared with the IS group, the Zhuang medicine Shuanglu Tongnao Formula and BBG groups demonstrated alleviated brain tissue damage; reduced neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with increased proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. ATP reversed the effects of Zhuang medicine Shuanglu Tongnao Formula on microglial polarization and neuroinflammation in IS rats. Conclusion Zhuang medicine Shuanglu Tongnao Formula may promote the transformation of microglia from M1 type to M2 type by inhibiting the P2X7R/NLRP3 pathway, thereby improving neuroinflammation in IS rats.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Receptors, Purinergic P2X7/metabolism*
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Ischemic Stroke/pathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Brain Ischemia/drug therapy*
;
Microglia/metabolism*
4.Multi-modal magnetic resonance imaging assessment and mechanism exploration of preterm white matter injury in neonatal rats.
Xiao-Tian GAO ; Hai-Mo ZHANG ; Xiao-Zu ZHANG ; Yi-Jing WANG ; Hui-Ning BI ; Miao YU ; Yan LI ; Xiao-Li WANG
Chinese Journal of Contemporary Pediatrics 2025;27(3):366-372
OBJECTIVES:
To evaluate preterm white matter injury (PWMI) in neonatal rats using multimodal magnetic resonance imaging (MRI) combined with histological assessments and to explore its underlying mechanisms.
METHODS:
Healthy 3-day-old Sprague-Dawley neonatal rats were randomly divided into a sham operation group and a PWMI group (n=12 in each group). A PWMI model was established in neonatal rats through hypoxia-ischemia. Laser speckle imaging was used to observe changes in cerebral oxygen saturation and blood flow at different time points post-modeling. Multimodal MRI was employed to assess the condition of white matter injury, while hematoxylin-eosin staining was utilized to observe morphological changes in the striatal area on the injured side. Immunofluorescence staining was performed to detect the proliferation and differentiation of oligodendrocyte precursor cells.
RESULTS:
At 0, 6, 12, 24, and 72 hours post-modeling, the relative blood flow and relative oxygen saturation on the injured side in the PWMI group were significantly lower than those in the sham operation group (P<0.05). At 24 hours post-modeling, T2-weighted imaging showed high signals in the white matter of the injured side in the PWMI group, with relative apparent diffusion coefficient values and Lorenz differential values being lower than those in the sham operation group (P<0.001); additionally, the arrangement of nerve cells in the PWMI group was disordered, and the number of EdU+PDGFR-α+ cells was higher than that in the sham operation group (P<0.001). At 28 days post-modeling, the relative fractional anisotropy values, the number of EdU+Olig2+ cells, and the fluorescence intensity of myelin basic protein and neurofilament protein 200 in the white matter region of the PWMI group were all lower than those in the sham operation group (P<0.001).
CONCLUSIONS
Multimodal MRI can evaluate early and long-term changes in PWMI in neonatal rat models in vivo, providing both imaging and pathological evidence for the diagnosis and treatment of PWMI in neonates. Hypoxia-ischemia inhibits the proliferation and differentiation of oligodendrocyte precursor cells in neonatal rats, leading to PWMI.
Animals
;
Rats, Sprague-Dawley
;
Magnetic Resonance Imaging/methods*
;
Rats
;
White Matter/injuries*
;
Animals, Newborn
;
Female
;
Multimodal Imaging
;
Male
;
Hypoxia-Ischemia, Brain/pathology*
5.Exosomes derived from mesenchymal stem cells alleviate white matter damage in neonatal rats by targeting the NLRP3 inflammasome.
Chao WANG ; Yan-Ping ZHU ; BAYIERCAICIKE ; Yu-Qing FENG ; Yan-Mei WANG
Chinese Journal of Contemporary Pediatrics 2025;27(9):1119-1127
OBJECTIVES:
To investigate whether mesenchymal stem cell-derived exosomes (MSC-Exo) alleviate white matter damage (WMD) in neonatal rats by targeting the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3).
METHODS:
Three-day-old Sprague-Dawley rats were randomly assigned to four groups: Sham, hypoxia-ischemia (HI), MSC-Exo, and MCC950 (NLRP3 inhibitor) (n=24 per group). The WMD model was established by unilateral common carotid artery ligation combined with hypoxia. Exosomes (1×108 particles/μL) were transplanted into the lateral ventricle using stereotaxic guidance. Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in brain tissue, and transmission electron microscopy was used to assess myelinated axons. Western blotting was performed to detect the expression of myelin basic protein (MBP), NLRP3, caspase-1, and interleukin-1β (IL-1β). Immunohistochemistry was used to measure NLRP3, caspase-1, and IL-1β expression. Twenty-eight days post-modeling, behavioral changes were evaluated using the Morris water maze.
RESULTS:
In the HI group, marked inflammatory cell infiltration, extensive vacuolation, and decreased numbers of myelinated axons were observed compared to the Sham group. The MSC-Exo group showed reduced inflammatory infiltration, fewer vacuoles, and increased myelinated axons compared to the HI group, while the MCC950 group showed nearly normal cell morphology. Compared to the Sham group, the HI group exhibited decreased MBP expression, fewer platform crossings, shorter time in the target quadrant, increased expression of NLRP3, caspase-1, and IL-1β, and longer escape latency (all P<0.05). Compared to the HI group, the MSC-Exo and MCC950 groups showed increased MBP expression, more platform crossings, longer target quadrant stay, and reduced NLRP3, caspase-1, and IL-1β expression, as well as shorter escape latency (all P<0.05).
CONCLUSIONS
MSC-Exo may attenuate white matter damage in neonatal rats by targeting the NLRP3 inflammasome and promoting oligodendrocyte maturation.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors*
;
Rats, Sprague-Dawley
;
White Matter/pathology*
;
Inflammasomes/physiology*
;
Rats
;
Animals, Newborn
;
Mesenchymal Stem Cells
;
Interleukin-1beta/analysis*
;
Male
;
Caspase 1/analysis*
;
Hypoxia-Ischemia, Brain/therapy*
;
Myelin Basic Protein/analysis*
6.Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway.
Chao WANG ; Meng-Xin WANG ; Yan-Ping ZHU
Chinese Journal of Contemporary Pediatrics 2025;27(11):1398-1407
OBJECTIVES:
To investigate whether human umbilical cord mesenchymal stem cells (HUC-MSCs) play protective effects against white matter injury (WMI) in neonatal rats via activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase-1 (HO-1) signaling pathway.
METHODS:
A neonatal WMI model was established in 3-day-old Sprague-Dawley rats by unilateral common carotid artery ligation combined with hypoxia. The study comprised two parts. (1) Rats were randomized into sham, hypoxia-ischemia (HI), and HUC-MSC groups (n=36 per group); brain tissues were collected at 7, 14, and 21 days after modeling. (2) Rats were randomized into sham, HI, HUC-MSC, and HUC-MSC+ML385 (Nrf2 inhibitor) groups (n=12 per group); tissues were collected 14 days after modeling. Hematoxylin-eosin staining assessed histopathology, and Luxol fast blue staining evaluated myelination. Immunohistochemistry examined the localization and expression of Nrf2, myelin basic protein (MBP), and proteolipid protein (PLP). Immunofluorescence assessed synaptophysin (SYP) and postsynaptic density-95 (PSD-95). Western blotting quantified Nrf2, Keap1, HO-1, SYP, PSD-95, MBP, and PLP. Spatial learning and memory were evaluated by the Morris water maze.
RESULTS:
At 7, 14, and 21 days after modeling, the sham group showed intact white matter, whereas the HI group exhibited white matter disruption, cellular vacuolation, and disorganized nerve fibers. These pathological changes were attenuated in the HUC-MSC group. Compared with the HI group, the HUC-MSC group showed increased Nrf2 immunopositivity and protein levels, increased HO-1 protein levels, and decreased Keap1 protein levels (P<0.05). Compared with the HI group, the HUC-MSC group had higher SYP and PSD-95 immunofluorescence intensities and protein levels, higher MBP and PLP positivity and protein levels, increased mean optical density of myelin, more platform crossings, and longer time in the target quadrant (all P<0.05). These improvements were reduced in the HUC-MSC+ML385 group compared with the HUC-MSC group (P<0.05).
CONCLUSIONS
HUC-MSCs may promote oligodendrocyte maturation and synaptogenesis after neonatal WMI by activating the Nrf2/Keap1/HO-1 pathway, thereby improving spatial cognitive function.
NF-E2-Related Factor 2/physiology*
;
Animals
;
Rats, Sprague-Dawley
;
Signal Transduction/physiology*
;
Humans
;
Rats
;
White Matter/pathology*
;
Kelch-Like ECH-Associated Protein 1/physiology*
;
Umbilical Cord/cytology*
;
Heme Oxygenase-1/physiology*
;
Animals, Newborn
;
Male
;
Mesenchymal Stem Cell Transplantation
;
Heme Oxygenase (Decyclizing)/physiology*
;
Mesenchymal Stem Cells/physiology*
;
Female
;
Hypoxia-Ischemia, Brain
7.Artesunate alleviates hypoxic-ischemic brain damage in neonatal rats by inhibiting NLRP3 inflammasome activation and inflammatory cytokine secretion.
Yinli CAO ; Yazhou SUN ; Qingyang CUI ; Xiaojing HE ; Zhenzhen LI
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):410-415
Objective To investigate the protective effect of artesunate on hypoxic-ischemic brain damage (HIBD) and its mechanism in neonatal rats. Methods 7-day-old neonatal SD rats were randomly divided into sham operation group, model group, artesunate 5 mg/kg group, artesunate 10 mg/kg group, artesunate 20 mg/kg group and dexamethasone 6 mg/kg group, with 18 rats in each group. HIBD models were established in groups except for the sham operation group. The sham operation group only needed to separate the left common carotid artery without ligation and nitrogen-oxygen mixed gas ventilation. Each group was injected with drug intraperitoneally right after surgery and the rats in the sham operation group and the model group were injected with an equal volume of normal saline (once a day for a total of 5 times). One hour after the last injection, the rats in each group were scored for neurological defects. After the rats were sacrificed, the brain water content was measured and the pathological changes of the brain tissues of rats were observed. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) was used to detect the neuronal cell apoptosis, and ELISA was applied to detect the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood of each group of rats. Western blot analysis was adopted to detect the protein expression levels of NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC) and caspase-1 in the rats brain tissues of each group. Results Compared with the model group, the neurological deficit score was decreased; the pathological damage of brain tissues was relieved; the brain water content was significantly reduced; the apoptosis number of hippocampal neurons was decreased significantly; the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood were significantly reduced; the protein expression levels of NLRP3, ASC and caspase-1 were significantly lowered in the middle-dose and high-dose artesunate groups and the dexamethasone group. Conclusion Artesunate can improve the neurological function, relieve the brain damage, and alleviate the brain edema in neonatal rats with HIBD. It can protect the HIBD, which may be related to the inhibition of NLRP3 inflammasome activation and reduction of inflammatory cytokine secretion.
Animals
;
Rats
;
Animals, Newborn
;
Artesunate/pharmacology*
;
Brain/metabolism*
;
Caspases/metabolism*
;
Dexamethasone
;
Hypoxia-Ischemia, Brain/pathology*
;
Inflammasomes
;
Interleukin-6/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
;
Water/metabolism*
8.Expert consensus on the clinical practice of neonatal brain magnetic resonance imaging.
Chinese Journal of Contemporary Pediatrics 2022;24(1):14-25
In recent years, magnetic resonance imaging (MRI) has been widely used in evaluating neonatal brain development, diagnosing neonatal brain injury, and predicting neurodevelopmental prognosis. Based on current research evidence and clinical experience in China and overseas, the Neonatologist Society of Chinese Medical Doctor Association has developed a consensus on the indications and standardized clinical process of neonatal brain MRI. The consensus has the following main points. (1) Brain MRI should be performed for neonates suspected of hypoxic-ischemic encephalopathy, intracranial infection, stroke and unexplained convulsions; brain MRI is not considered a routine in the management of preterm infants, but it should be performed for further evaluation when cranial ultrasound finds evidence of brain injury; as for extremely preterm or extremely low birth weight infants without abnormal ultrasound findings, it is recommended that they should undergo MRI examination at term equivalent age once. (2) Neonates should undergo MRI examination in a non-sedated state if possible. (3) During MRI examination, vital signs should be closely monitored to ensure safety; the necessity of MRI examination should be strictly evaluated for critically ill neonates, and magnetic resonance compatible incubator and ventilator can be used. (4) At present, 1.5 T or 3.0 T equipment can be used for neonatal brain MRI examination, and the special coil for the neonatal head should be used to improve signal-to-noise ratio; routine neonatal brain MRI sequences should at least include axial T1 weighted image (T1WI), axial T2 weighted imaging (T2WI), diffusion-weighted imaging, and sagittal T1WI or T2WI. (5) It is recommended to use a structured and graded reporting system, and reports by at least two reviewers and multi-center collaboration are recommended to increase the reliability of the report.
Brain/pathology*
;
Consensus
;
Humans
;
Hypoxia-Ischemia, Brain/pathology*
;
Infant
;
Infant, Newborn
;
Infant, Premature
;
Magnetic Resonance Imaging/methods*
;
Reproducibility of Results
9.Leptin relieves ischemia/reperfusion induced acute kidney injury through inhibiting apoptosis and autophagy.
Siyao LI ; Kaiting ZHUANG ; Yi HE ; Yunzhen DENG ; Jing XI ; Junxiang CHEN
Journal of Central South University(Medical Sciences) 2022;47(1):8-17
OBJECTIVES:
Acute kidney injury (AKI) can be caused by ischemia/reperfusion (I/R), nephrotoxin, and sepsis, with poor prognosis and high mortality. Leptin is a protein molecule that regulates the body's energy metabolism and reproductive activities via binding to its specific receptor. Leptin can inhibit cardiomyocyte apoptosis caused by I/R, but its effect on I/R kidney injury and the underlying mechanisms are still unclear. This study aims to investigate the effect and mechanisms of leptin on renal function, renal histopathology, apoptosis, and autophagy during acute I/R kidney injury.
METHODS:
Healthy adult male mice were randomly divided into 4 groups: a sham+wild-type mice (ob/+) group, a sham+leptin gene-deficient mice (ob/ob) group, an I/R+ob/+ group, and an I/R+ob/ob group (n=8 per group). For sham operation, a longitudinal incision was made on the back of the mice to expose and separate the bilateral kidneys and renal arteries, and no subsequent treatment was performed. I/R treatment was ischemia for 30 min and reperfusion for 48 h. The levels of BUN and SCr were detected to evaluate renal function; HE staining was used to observe the pathological changes of renal tissue; TUNEL staining was used to observe cell apoptosis, and apoptosis-positive cells were counted; Western blotting was used to detect levels of apoptosis-related proteins (caspase 3, caspase 9), autophagy-related proteins [mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), LC3 I, LC3 II], mTOR-dependent signaling pathway proteins [phosphate and tension homology (PTEN), adenosine monophosphate-activated protein kinase (AMPK), protein kinase B (AKT), extracellular regulated protein kinase (ERK), phosphorylated PTEN (p-PTEN), phosphorylated AMPK (p-AMPK), phosphorylated AKT (p-AKT), phosphorylated ERK (p-ERK)].
RESULTS:
There was no significant difference in the levels of BUN and SCr between the sham+ob/+ group and the sham+ob/ob group (both P>0.05). The levels of BUN and SCr in the I/R+ob/+ group were significantly higher than those in the sham+ob/+ group (both P<0.05). Compared with the mice in the sham+ob/ob group or the I/R+ob/+ group, the levels of BUN and SCr in the I/R+ob/ob group were significantly increased (all P<0.05). There was no obvious damage to the renal tubules in the sham+ob/+ group and the sham+ob/ob group. Compared with sham+ob/+ group and sham+ob/ob group, both the I/R+ob/+ group and the I/R+ob/ob group had cell damage such as brush border shedding, vacuolar degeneration, and cast formation. Compared with the I/R+ob/+ group, the renal tubules of the mice in the I/R+ob/ob group were more severely damaged. The pathological score of renal tubular injury showed that the renal tubular injury was the most serious in the I/R+ob/ob group (P<0.05). Compared with the sham+ob/+ group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, the ratio of LC3 II to LC3 I was significantly increased, and the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/+ group (all P<0.05). Compared with the sham+ob/ob group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, and the ratio of LC3 II to LC3 I was significantly increased, while the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/ob group (all P<0.05). Compared with the I/R+ob/+ group, the levels of p-mTOR, p-PTEN, p-AMPK, p-AKT were more significantly down-regulated, while the levels of caspase 3, caspase 9, PTEN, and LC3 II were more significantly up-regulated, and the ratio of LC3 II to LC3 I was more significantly increase in the I/R+ob/ob group (all P<0.05).
CONCLUSIONS
Renal function and tubular damage, and elevated levels of apoptosis and autophagy are observed in mice kidneys after acute I/R. Leptin might relieve I/R induced AKI by inhibiting apoptosis and autophagy that through a complex network of interactions between mTOR-dependent signaling pathways.
AMP-Activated Protein Kinases/metabolism*
;
Acute Kidney Injury/pathology*
;
Animals
;
Apoptosis
;
Apoptosis Regulatory Proteins/pharmacology*
;
Autophagy
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Female
;
Humans
;
Ischemia
;
Kidney/pathology*
;
Leptin/pharmacology*
;
Male
;
Mammals/metabolism*
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Reperfusion/adverse effects*
;
Reperfusion Injury/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
10.Exercise preconditioning reduces exercise-induced risks of cardiovascular events in obese population.
Chuan-Zhi WANG ; Wei WANG ; Shuang-Shuang ZHANG ; Zhi-De LIANG ; Yang YUAN
Acta Physiologica Sinica 2022;74(5):792-804
Obesity is an independent risk factor of cardiovascular diseases. Epidemiological studies have shown that obesity induces the production of inflammatory factors and changes in cardiac hemodynamics, remodeling and function, leading to myocardial damage and heart diseases. The positive effect of exercise on the cardiovascular system has been widely confirmed, while the acute cardiovascular stress caused by exercise cannot be ignored. Compared with the general population, obese people were more prone to arrhythmia and have a higher risk of cardiovascular events during exercise, due to their abnormal cardiac function, myocardial pathological remodeling and low tolerance to corresponding stress. Studies have shown that the intervention of exercise preconditioning (EP) can effectively reduce such risks. EP increases myocardial oxygen consumption through short-term exercise, resulting in relative or absolute myocardial ischemia, inducing the intrinsic myocardial protective effect and reducing the continuous ischemia caused by subsequent long-term exercise. This article reviews the obesity-induced abnormal changes of cardiac function and structure, possible exercise- induced risks of cardiovascular events in obese people and the role of EP in reducing exercise-induced risks of cardiovascular events. We summarize the progress on EP models in obese people, EP prevention against adverse cardiovascular events in obese people, with the aim to provide a theoretical basis for the application of EP in obese people.
Humans
;
Exercise
;
Obesity
;
Myocardium/pathology*
;
Myocardial Ischemia
;
Cardiovascular Diseases

Result Analysis
Print
Save
E-mail