1.Guidelines for iron chelation therapy in thalassemia in China (2025).
Chinese Journal of Contemporary Pediatrics 2025;27(4):377-388
Iron overload is a major complication of thalassemia, clinically manifested as heart failure, liver cirrhosis, diabetes, growth and development retardation, and delayed sexual development, with severe cases leading to death. Standardized iron chelation therapy is essential to ensure long-term and high-quality survival for patients. This guideline provides recommendations on methods for detecting iron overload, the timing for initiating iron chelation therapy, treatment strategies for transfusion-dependent and non-transfusion-dependent thalassemia, and special circumstances regarding iron chelation therapy, serving as a reference for iron chelation treatment in thalassemia.
Humans
;
Thalassemia/drug therapy*
;
Iron Chelating Agents/therapeutic use*
;
Iron Overload/diagnosis*
;
Chelation Therapy
2.The Impact of Iron Overload on the Immune System in Patients with β-Thalassemia and Treatment Recommendations --Review.
Journal of Experimental Hematology 2025;33(5):1546-1550
β-Thalassemia is an autosomal recessive genetic disorder caused by defects in the synthesis of the β-globin chains. Due to ineffective erythropoiesis and premature destruction of red blood cells, patients suffer from anemia, iron overload, organ damage, and impaired immune system. The impairment of the immune system is mainly due to the increase in the levels of reactive oxygen species (ROS) caused by iron overload, which induces DNA oxidation and leads to DNA damage. The treatment strategies for β-thalassemia mainly include gene therapy and allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, iron overload in patients cannot be eliminated promptly after gene therapy and transplantation. Therefore, even if allo-HSCT is performed, the patient's hematopoietic function may still be impaired. Iron chelators and antioxidants have been proven to effectively intervene in the immune damage caused by iron overload. This article aims to review the research progress on the effects of iron overload on the immune system in patients with β-thalassemia, and provides relevant treatment recommendations for immune recovery.
Humans
;
beta-Thalassemia/immunology*
;
Iron Overload/therapy*
;
Immune System
;
Hematopoietic Stem Cell Transplantation
3.Recommendations of EASL clinical practice guidelines on haemochromatosis.
Shan TANG ; Su Jun ZHENG ; Zhong Ping DUAN
Chinese Journal of Hepatology 2022;30(9):934-938
Haemochromatosis is characterised by elevated transferrin saturation (TSAT) and progressive iron loading that mainly affects the liver. Early diagnosis and treatment by phlebotomy can prevent cirrhosis, hepatocellular carcinoma, diabetes, arthropathy and other complications. In patients homozygous for p.Cys282Tyr in HFE, provisional iron overload based on serum iron parameters (TSAT >45% and ferritin >200 μg/L in females and TSAT >50% and ferritin >300 μg/L in males and postmenopausal women) is sufficient to diagnose haemochromatosis. In patients with high TSAT and elevated ferritin but other HFE genotypes, diagnosis requires the presence of hepatic iron overload on MRI or liver biopsy. The stage of liver fibrosis and other end-organ damage should be carefully assessed at diagnosis because they determine disease management. Patients with advanced fibrosis should be included in a screening programme for hepatocellular carcinoma. Treatment targets for phlebotomy are ferritin <50 μg/L during the induction phase and <100 μg/L during the maintenance phase.
Male
;
Humans
;
Female
;
Hemochromatosis/therapy*
;
Hemochromatosis Protein/genetics*
;
Carcinoma, Hepatocellular/complications*
;
Iron Overload/genetics*
;
Ferritins
;
Liver Cirrhosis/complications*
;
Iron
;
Fibrosis
;
Liver Neoplasms/complications*
;
Transferrins
4.Influencing factors of iron metabolism assessment in patients with myelodysplastic syndrome: A retrospective study.
Yao ZHANG ; Chao XIAO ; Jing LI ; Lu Xi SONG ; You Shan ZHAO ; Jun Gong ZHAO ; Chun Kang CHANG
Chinese Journal of Hematology 2022;43(4):293-299
Objective: To analyze the influencing factors of iron metabolism assessment in patients with myelodysplastic syndrome. Methods: MRI and/or DECT were used to detect liver and cardiac iron content in 181 patients with MDS, among whom, 41 received regular iron chelation therapy during two examinations. The adjusted ferritin (ASF) , erythropoietin (EPO) , cardiac function, liver transaminase, hepatitis antibody, and peripheral blood T cell polarization were detected and the results of myelofibrosis, splenomegaly, and cyclosporine were collected and comparative analyzed in patients. Results: We observed a positive correlation between liver iron concentration and ASF both in the MRI group and DECT groups (r=0.512 and 0.606, respectively, P<0.001) , only a weak correlation between the heart iron concentration and ASF in the MRI group (r=0.303, P<0.001) , and no significant correlation between cardiac iron concentration and ASF in the DECT group (r=0.231, P=0.053) . Moreover, transfusion dependence in liver and cardiac [MRI group was significantly associated with the concentration of iron in: LIC: (28.370±10.706) mg/g vs (7.593±3.508) mg/g, t=24.30, P<0.001; MIC: 1.81 vs 0.95, z=2.625, P<0.05; DECT group: liver VIC: (4.269±1.258) g/L vs (1.078±0.383) g/L, t=23.14, P<0.001: cardiac VIC: 1.69 vs 0.68, z=3.142, P<0.05]. The concentration of EPO in the severe iron overload group was significantly higher than that in the mild to moderate iron overload group and normal group (P<0.001) . Compared to the low-risk MDS group, the liver iron concentration in patients with MDS with cyclic sideroblasts (MDS-RS) was significantly elevated [DECT group: 3.80 (1.97, 5.51) g/L vs 1.66 (0.67, 2.94) g/L, P=0.004; MRI group: 13.7 (8.1,29.1) mg/g vs 11.6 (7.1,21.1) mg/g, P=0.032]. Factors including age, bone marrow fibrosis, splenomegaly, T cell polarization, use of cyclosporine A, liver aminotransferase, and hepatitis antibody positive had no obvious effect on iron metabolism. Conclusion: There was a positive correlation between liver iron concentration and ASF in patients with MDS, whereas there was no significant correlation between cardiac iron concentration and ASF. Iron metabolism was affected by transfusion dependence, EPO concentration, and RS.
Ferritins
;
Humans
;
Iron
;
Iron Overload
;
Liver/metabolism*
;
Myelodysplastic Syndromes/therapy*
;
Primary Myelofibrosis
;
Retrospective Studies
;
Splenomegaly
5.Role of redox iron towards an increase in mortality among patients: a systemic review and meta-analysis
Blood Research 2019;54(2):87-101
An increase in biochemical concentrations of non-transferrin bound iron (NTBI) within the patients with an increase in serum iron concentration was evaluated with the following objectives: (a) Iron overloading diseases/conditions with free radicle form of ‘iron containing’ reactive oxygen species (ROS) and its imbalance mediated mortality, and (b) Intervention with iron containing drugs in context to increased redox iron concentration and treatment induced mortality. Literature search was done within Pubmed and cochrane review articles. The Redox iron levels are increased during dys-erythropoiesis and among transfusion recipient population and are responsive to iron-chelation therapy. Near expiry ‘stored blood units’ show a significant rise in the ROS level. Iron mediated ROS damage may be estimated by the serum antioxidant level, and show reduction in toxicity with high antioxidant, low pro-oxidant levels. Iron drug therapy causes a significant increase in NTBI and labile iron levels. Hospitalized patients on iron therapy however show a lower mortality rate. Serum ferritin is a mortality indicator among the high-dose iron therapy and transfusion dependent population. The cumulative difference of pre-chelation to post chelation ROS iron level was 0.97 (0.62; 1.32; N=261) among the transfusion dependent subjects and 2.89 (1.81–3.98; N=130) in the post iron therapy ‘iron ROS’ group. In conclusion, iron mediated mortality may not be mediated by redox iron among multi-transfused and iron overloaded patients.
Drug Therapy
;
Ferritins
;
Hepcidins
;
Humans
;
Iron Overload
;
Iron
;
Mortality
;
Oxidation-Reduction
;
Reactive Oxygen Species
6.Relationship between liver iron concentration determined by R2-MRI, serum ferritin, and liver enzymes in patients with thalassemia intermedia.
Hayder AL-MOMEN ; Shaymaa Kadhim JASIM ; Qays Ahmed HASSAN ; Hayder Hussein ALI
Blood Research 2018;53(4):314-319
BACKGROUND: Iron overload is a risk factor affecting all patients with thalassemia intermedia (TI). We aimed to determine whether there is a relationship of serum ferritin (SF) and alanine aminotransferase (ALT) with liver iron concentration (LIC) determined by R2 magnetic resonance imaging (R2-MRI), to estimate the most relevant degree of iron overload and best time to chelate in patients with TI. METHODS: In this cross-sectional study, 119 patients with TI (mean age years) were randomly selected and compared with 120 patients who had a diagnosis of thalassemia major (TM). Correlations of LIC, as determined by R2-MRI, with SF and ALT levels, were assessed in all participants. A P-value < 0.05 was considered statistically significant. RESULTS: SF and LIC levels were lower in patients with TI than in those with TM; only ferritin values were significant. We found a statistically significant relationship between SF and LIC, with cut-off estimates of SF in patients with TI who had splenectomy and those who entered puberty spontaneously (916 and 940 ng/mL, respectively) with LIC >5 mg Fe/g dry weight (P < 0.0001). A significant relationship was also found for patients with TI who had elevated ALT level (63.5 U/L), of 3.15 times the upper normal laboratory limit, using a cut-off for LIC ≥5 mg Fe/g dry weight. CONCLUSION: We determined the cut-off values for ALT and SF indicating the best time to start iron chelation therapy in patients with TI, and found significant correlations among iron overload, SF, and ALT.
Adolescent
;
Alanine Transaminase
;
beta-Thalassemia*
;
Chelation Therapy
;
Cross-Sectional Studies
;
Diagnosis
;
Ferritins*
;
Humans
;
Iron Overload
;
Iron*
;
Liver*
;
Magnetic Resonance Imaging
;
Puberty
;
Risk Factors
;
Splenectomy
;
Thalassemia*
7.Multiple Pathological Fractures Secondary to Endocrinopathy from Thalassaemia.
Annals of the Academy of Medicine, Singapore 2016;45(7):318-321
Adult
;
Diabetes Mellitus
;
etiology
;
Fractures, Spontaneous
;
etiology
;
Humans
;
Hypogonadism
;
etiology
;
Hypoparathyroidism
;
etiology
;
Hypothyroidism
;
etiology
;
Iron Overload
;
etiology
;
Male
;
Osteoporosis
;
etiology
;
Osteoporotic Fractures
;
etiology
;
Recurrence
;
Transfusion Reaction
;
beta-Thalassemia
;
therapy
8.Effects of pre-immunosupressive therapy iron overload on hematologic response of severe aplastic anemia.
Lei YE ; Liping JING ; Guangxin PENG ; Kang ZHOU ; Yang LI ; Yuan LI ; Jianping LI ; Huihui FAN ; Wenrui YANG ; Fengkui ZHANG ; Li ZHANG
Chinese Journal of Hematology 2016;37(4):324-328
OBJECTIVETo explore the effects of serum ferritin (SF) and iron overload (IO) pre-immunosupressive treatment (IST) on hematologic response of severe aplastic anemia (SAA/VSAA) patients treated with IST.
METHODS257 SAA/VSAA patients who underwent first-line IST from Feb, 2003 to Dec, 2011 in Anemia Therapeutic Centre, Institute of Hematology and Blood Diseases Hospital were retrospectively analyzed, the status of SF before IST and the IO-affected factors were studied. The effects of IO on hematologic response of SAA/VSAA patients were evaluated as well.
RESULTSThe median level of SF of 257 patients was 387 (6-2 004) μg/L. 36 patients (14%) had IO, including 20 SAA and 16 VSAA patients. According to univariate logistical regression analyses, IO was influenced by age>14 years (P=0.010) and blood transfusion (P<0.001). The multivariate logistic regression analysis showed that blood transfusion [P=0.001, OR=0.218 (95% CI 0.092-0.520)] was the only independent prognostic factor. SAA (but not for VSAA) patients with IO had much lower hematologic response rate in 6 month after IST (P=0.037). Absolute reticulocyte count and IO correlated with response at 6 month by univariate logistical regression analysis (P=0.014, 0.037). The multivariate logistic regression analysis showed that IO [P=0.021, OR=4.092 (95% CI 1.235-13.563)], ARC ≥20×10(9)/L [P=0.040, OR=2.743 (95% CI 1.049-7.175)] were independent prognostic factors.
CONCLUSION84.8% patients had high serum ferritin before IST, and 14.0% reached IO. Adult and more blood transfusion caused IO more likely. IO correlated with response at 6 month, and was independent prognostic factor.
Adult ; Anemia, Aplastic ; drug therapy ; physiopathology ; Blood Transfusion ; Ferritins ; blood ; Humans ; Immunosuppressive Agents ; therapeutic use ; Iron Overload ; physiopathology ; Logistic Models ; Reticulocyte Count ; Retrospective Studies
9.Efficacy and safety of deferasirox in aplastic anemia patients with iron overload: a single arm, multi-center,prospective study in China.
Jun SHI ; Hong CHANG ; Li ZHANG ; Yinqi SHAO ; Neng NIE ; Jing ZHANG ; Jinbo HUANG ; Li ZHANG ; Xudong TANG ; Richeng QUAN ; Chunmei ZHENG ; Haiyan XIAO ; Dengming HU ; Lingyan HU ; Feng LIU ; Yongming ZHOU ; Yizhou ZHENG ; Fengkui ZHANG
Chinese Journal of Hematology 2016;37(1):1-6
OBJECTIVETo explore the efficacy and safety of deferasirox in aplastic anemia (AA)patients with iron overload.
METHODSA single arm, multi- center, prospective, open- label study was conducted to evaluate absolute change in serum ferritin (SF)from baseline to 12 months of deferasirox administration, initially at a dose of 20 mg·kg(-1)·d(-1), and the safety in 64 AA patients with iron overload.
RESULTSAll patients started their deferasirox treatment with a daily dose of 20 mg · kg(-1) ·d(-1). The mean actual dose was (18.6±3.60) mg · kg(-1)·d(-1). The median SF decreased from 4 924 (2 718- 6 765)μg/L at baseline (n=64) to 3 036 (1 474- 5 551)μg/L at 12 months (n=23) with the percentage change from baseline as 38%. A median SF decrease of 651 (126-2 125)μg/L was observed at the end of study in 23 patients who completed 12 months' treatment, the median SF level decreased by 1 167(580-4 806)μg/L [5 271(3 420-8 278)μg/L at baseline; 3 036(1 474-5 551)μg/L after 12 months' treatment; the percentage change from baseline as 42% ] after 12 months of deferasirox treatment. The most common adverse events (AEs) were increased serum creatinine levels (40.98%), gastrointestinal discomfort (40.98%), elevated liver transaminase (ALT: 21.31%; AST: 13.11%)and proteinuria (24.59%). The increased serum creatinine levels were reversible and non-progressive. Of 38 patients with concomitant cyclosporine use, 12(31.8%)patients had two consecutive values >ULN, 10(26.3%)patients had two consecutive values >1.33 baseline values, but only 1(2.6%)patient's serum creatinine increased more than 1.33 baseline values and exceeded ULN. For both AST and ALT, no patients experienced two post- baseline values >5 ×ULN or >10 × ULN during the whole study. In AA patients with low baseline PLT count (less than 50 × 10(9)/L), there was no decrease for median PLT level during 12 months' treatment period.
CONCLUSIONSAA patients with iron overload could achieve satisfactory efficacy of iron chelation by deferasirox treatment. The drug was well tolerated with a clinically manageable safety profile and no major adverse events.
Anemia, Aplastic ; drug therapy ; Benzoates ; therapeutic use ; Blood Transfusion ; China ; Ferritins ; blood ; Humans ; Iron ; blood ; Iron Chelating Agents ; therapeutic use ; Iron Overload ; drug therapy ; Liver ; Prospective Studies ; Triazoles ; therapeutic use
10.Treatment and Management of Late Complications in Hereditary Hemolytic Anemia
Clinical Pediatric Hematology-Oncology 2016;23(1):1-7
Hereditary hemolytic anemia is a very heterogeneous disorder in which abnormalities of red blood cell structural protein, globin protein, or enzyme defect lead to shortened life span. There has been much progress in revealing its pathophysiology and genetic backgrounds, but the lifelong plans for caring these patients are not well established yet. All patients with hereditary hemolytic anemic have three common problems: transfusion dependency, iron overload and iron chelation therapy. Patients with hereditary spherocytosis (HS) usually manifest severe anemia in neonatal period and infancy, but transfusion requirements may decrease in adulthood. But patients with thalassemia or sickle cell disease usually transfusion-dependent throughout life. Maintaining the optimal hemoglobin (Hb) levels in these patients is crucial because correction of anemia and dilution of abnormal Hb helps prevent certain complications that frequently occur in these patients. Frequent transfusion leads to transfusion-mediated infection and hemochromatosis. Iron chelation therapy should be started early to prevent permanent organ damage. Folate therapy can be helpful in patients with hereditary spherocytosis. Regular evaluations for cholestasis should be started at age 5, and splenectomy with concurrent cholecystectomy can be considered if the patient has cholecystitis. Hydroxyurea can be used to reduce transfusion requirements and prevent complications in patients with β-thalassemia and sickle cell disease. Consensus on long-term management of patients with hereditary hemolytic anemia is lacking, especially for adult patients. But further efforts to build guidelines for long-term follow-up and management of the patients with hereditary hemolytic anemia in the context of Korean society are needed.
Adult
;
Anemia
;
Anemia, Hemolytic, Congenital
;
Anemia, Sickle Cell
;
Chelation Therapy
;
Cholecystectomy
;
Cholecystitis
;
Cholestasis
;
Consensus
;
Erythrocytes
;
Folic Acid
;
Follow-Up Studies
;
Globins
;
Hemochromatosis
;
Humans
;
Hydroxyurea
;
Iron
;
Iron Overload
;
Splenectomy
;
Thalassemia

Result Analysis
Print
Save
E-mail