1.Research progress in pharmacological activities and pharmacokinetics of geniposidic acid.
Zi-Wei LI ; Sheng-Lan QI ; Qing-Guang ZHANG ; Ling CHEN ; Jing HU ; Guang-Bo GE ; Feng HUANG
China Journal of Chinese Materia Medica 2025;50(13):3679-3691
Geniposidic acid(GA), a natural iridoid, exists in the roots, stems, leaves, flowers, bark, fruits, and seeds of medicinal plants of Rubiaceae, Eucommiaceae, and Plantaginaceae. Modern pharmacological studies have revealed that GA has multiple pharmacological activities, including organ-protective, anti-inflammatory, antioxidative, anti-osteoporosis, anti-neurodegenerative, and anti-cardiovascular effects. GA can enhance cell/organism defenses by upregulating key anti-inflammatory and antioxidant cytokines, while downregulating key node proteins in pro-inflammatory signaling pathways such as AhR and TLR4/MyD88, thereby exerting pharmacological effects such as organ protection. Pharmacokinetic investigations have suggested that after oral administration, GA can be distributed in multiple organs(kidney, liver, heart, spleen, lung, etc.). In addition, the pharmacokinetic behavior of GA could be significantly altered under disease conditions, as demonstrated by a marked increase in systematic exposure. This article comprehensively summarizes the reported pharmacological activities and mechanisms and systematically analyzes the pharmacokinetic characteristics and key parameters of GA, with the aim of providing a theoretical basis and scientific reference for the precise clinical application of GA-related Chinese patent medicines, as well as for the investigation and development of innovative drugs based on GA.
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Iridoid Glucosides/chemistry*
;
Plants, Medicinal/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
2.Research on the mechanism of gentiopicroside preventing macrophage-mediated liver fibrosis by regulating the MIF-SPP1 signaling pathway in hepatic stellate cells.
Jixu WANG ; Yingbin ZHU ; Maoli CHEN ; Yongfeng HAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):593-602
Objective To explore the mechanism by which gentiopicroside (GPS) prevents macrophage-mediated hepatic fibrosis by regulating the macrophage migration inhibitory factor (MIF)-secreted phosphoprotein 1 (SPP1) signaling pathway in hepatic stellate cells. Methods LX-2 cells were divided into control group, transforming growth factor β(TGF-β) group, and TGF-β combined with GPS (25, 50, 100, 150 μmol/mL) groups. Cell proliferation was detected by EDU assay, cell invasion was assessed by TranswellTM assay, and the protein expressions of α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) were measured by Western blot. M1-type macrophage-conditioned medium (M1-CM) was used to treat LX-2 cells in the TGF-β group and TGF-β combined with GPS group. The concentrations of inducible nitric oxide synthase (iNOS) and arginase 1 (Arg1) in the cell supernatant, as well as cell proliferation, invasion ability, and the expressions of α-SMA and COL1A1 were detected. Bioinformatics analysis was performed to identify the target intersections of GPS, hepatic fibrosis, and macrophage-related genes. Drug affinity responsive target stability (DARTS) experiments and Western blot were used to verify the regulatory effect of GPS on MIF. Furthermore, LX-2 cells were divided into control group, TGF-β group, TGF-β combined with M2-CM group, TGF-β and oe-NC combined with M2-CM group, and TGF-β and oe-MIF combined with M2-CM group to analyze the concentrations of iNOS and Arg1 in the cell supernatant, as well as changes in cell proliferation, invasion, and the expressions of α-SMA and COL1A1. LX-2 cells were also divided into control group, TGF-β group, TGF-β combined with oe-NC group, TGF-β combined with oe-MIF group, and TGF-β and oe-MIF combined with GPS group to determine the protein expressions of MIF and SPP1 by Western blot. A rat model of hepatic fibrosis was constructed to explore the potential therapeutic effects of GPS on hepatic fibrosis in vivo. Results Compared with the control group, the proliferation and invasion abilities of LX-2 cells in the TGF-β group were increased, and the protein expressions of α-SMA and COL1A1 were enhanced. GPS intervention inhibited the proliferation and invasion of LX-2 cells under TGF-β conditions and reduced the expressions of α-SMA and COL1A1. Compared with the control group, the concentration of iNOS in the cell supernatant of the TGF-β group was upregulated, while the concentration of Arg1 was decreased. M1-CM treatment further increased the concentration of iNOS, decreased the concentration of Arg1, and promoted cell proliferation and invasion, as well as upregulated the expressions of α-SMA and COL1A1 on the basis of TGF-β intervention. However, GPS could reverse the effects of M1-CM intervention. Bioinformatics analysis revealed that MIF was one of the target intersections of GPS, hepatic fibrosis, and macrophage-related genes, and GPS could target and inhibit its expression. Compared with the TGF-β group, after M2-CM intervention, the concentration of iNOS in the cell supernatant decreased, the concentration of Arg1 increased, the proliferation and invasion abilities of LX-2 cells were reduced, and the expressions of α-SMA and COL1A1 were weakened. However, overexpression of MIF reversed the effects of M2-CM intervention. Western blot results showed that compared with the control group, the protein expressions of MIF and SPP1 were enhanced in the TGF-β group. Overexpression of MIF further enhanced the expressions of MIF and SPP1, while GPS intervention inhibited the expressions of MIF and SPP1. In the animal experiment, GPS intervention treatment alleviated liver injury in rats with hepatic fibrosis and inhibited the expressions of MIF and SPP1, as well as α-SMA and COL1A1 in liver tissue. Conclusion GPS may prevent macrophage-mediated hepatic fibrosis by inhibiting the MIF-SPP1 signaling pathway in hepatic stellate cells.
Hepatic Stellate Cells/metabolism*
;
Signal Transduction/drug effects*
;
Macrophage Migration-Inhibitory Factors/genetics*
;
Liver Cirrhosis/prevention & control*
;
Macrophages/drug effects*
;
Iridoid Glucosides/pharmacology*
;
Humans
;
Cell Proliferation/drug effects*
;
Animals
;
Cell Line
;
Collagen Type I/metabolism*
;
Collagen Type I, alpha 1 Chain
;
Intramolecular Oxidoreductases/genetics*
;
Rats
;
Transforming Growth Factor beta/pharmacology*
;
Actins/metabolism*
3.The effect of gentiopicroside on osteogenic differentiation of human bone marrow mesenchymal stem cells by regulating the SDF-1/CXCR4 signaling pathway.
Ruifang WANG ; Yingchun YANG ; Haibing QIAO ; Ying YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):784-789
Objective To investigate the effect of gentiopicroside on osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs), and to determine whether its mechanism involves the stromal cell-derived factor 1(SDF-1)/C-X-C chemokine receptor 4 (CXCR4) pathway. Methods BMSCs were divided into six groups: normal culture control group, osteogenic induction model group, low-dose gentiopicroside (L-gentiopicroside, 10 μmol/L) group, medium-dose gentiopicroside (M-gentiopicroside, 20 μmol/L) group, high-dose gentiopicroside (H-gentiopicroside, 40 μmol/L) group, and H-gentiopicroside+SDF-1/CXCR4 pathway inhibitor (AMD3100) group (H-gentiopicroside+AMD3100, 40 μmol/L gentiopicroside+10 μg/mL AMD3100). Cell viability, apoptosis, ALP activity, mineralized nodule formation, and protein levels of the SDF-1/CXCR4 pathway were assessed using the CCK-8 assay, flow cytometry, ALP staining, Alizarin Red S staining, and Western blotting, respectively. Results No mineralized nodules were observed in either the control and model group, although the color of the model group deepened. Compared with the control group, the model group showed significantly increased A value, ALP activity, expression levels of Runt related transcription factor 2 (RUNX2), osteopontin (OPN), SDF-1, CXCR4 proteins, along with a lower apoptosis rate. Compared with the model group, the L-gentiopicroside, M-gentiopicroside and H-gentiopicroside groups showed dose-dependently (L
4.Catalpol reduces liver toxicity of triptolide in mice by inhibiting hepatocyte ferroptosis through the SLC7A11/GPX4 pathway: testing the Fuzheng Zhidu theory for detoxification.
Linluo ZHANG ; Changqing LI ; Lingling HUANG ; Xueping ZHOU ; Yuanyuan LOU
Journal of Southern Medical University 2025;45(4):810-818
OBJECTIVES:
To investigate the protective effect of catalpol against triptolide-induced liver injury and explore its mechanism to test the Fuzheng Zhidu theory for detoxification.
METHODS:
C57BL/6J mice were randomized into blank control group, catalpol group, triptolide group and triptolide+catalpol group. After 13 days of treatment with the agents by gavage, the mice were examined for liver tissue pathology, liver function, hepatocyte subcellular structure, lipid peroxidation, ferrous ion deposition and expressions of ferroptosis-related proteins in the liver. In a liver cell line HL7702, the effect of catalpol or the ferroptosis inhibitor Fer-1 on triptolide-induced cytotoxicity was tested by examining cell functions, Fe2+ concentration, lipid peroxidation, ROS level and the ferroptosis-related proteins.
RESULTS:
In C57BL/6J mice, catalpol significantly alleviated triptolide-induced hepatic injury, lowered the levels of ALT, AST and LDH, and reversed the elevation of Fe2+ concentration and MDA level and the reduction of GPX level. In HL7702 cells, inhibition of ferroptosis by Fer-1 significantly reversed triptolide-induced elevation of ALT, AST and LDH levels. Western blotting and qRT-PCR demonstrated that catalpol reversed abnormalities in expressions of SLC7A11, FTH1 and GPX4 at both the mRNA and protein levels in triptolide-treated HL7702 cells.
CONCLUSIONS
The combined use of catalpol can reduce the hepatotoxicity of triptolide in mice by inhibiting excessive hepatocyte ferroptosis through the SLC7A11/GPX4 pathway.
Animals
;
Phenanthrenes/toxicity*
;
Ferroptosis/drug effects*
;
Diterpenes/toxicity*
;
Epoxy Compounds/toxicity*
;
Mice, Inbred C57BL
;
Hepatocytes/metabolism*
;
Mice
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Iridoid Glucosides/pharmacology*
;
Liver/metabolism*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Male
;
Amino Acid Transport System y+/metabolism*
5.Mechanism of aucubin in regulating ribosome biogenesis and inhibiting injury of nucleus pulposus cells and extracellular matrix degradation.
Ling-Hui LI ; Shang-Quan WANG ; Kai SUN ; Xun-Lu YIN ; Li-Guo ZHU ; Xu WEI
China Journal of Chinese Materia Medica 2024;49(21):5713-5720
This study aimed to investigate the effect of aucubin(AU) on injury of nucleus pulposus cells and extracellular matrix(ECM) degradation and its mechanism. The nucleus pulposus cell injury model was established by interleukin-1β(IL-1β) and treated with AU or phosphatidylinositol 3-kinase(PI3K) inhibitor LY294002. CCK-8 experiment was conducted to test cell proliferation. EdU staining method was employed to detect cell injury. Flow cytometry was used to detect cell apoptosis. Western blot was used to detect protein levels of cleaved-caspase-3, B-cell lymphoma(Bcl-2), Bcl-2 associated X protein(Bax), type Ⅱ collagen(collagen Ⅱ), aggregation proteoglycans(aggrecan), PI3K, and mammalian target of rapamycin(mTOR). qPCR was used to detect the rRNA level of 5S, 18S, and 28S. Ethynyluridine was used to label nascent RNA. The results showed that IL-1β could significantly cause injury of nucleus pulposus cells and increase the apoptosis rate of nucleus pulposus cells and the expression of apoptosis protein cleaved-caspase-3 and Bax. At the same time, IL-1β down-regulated the expression of anti-apoptotic protein Bcl-2 and collagen Ⅱ and aggrecan, the main components of ECM. On this basis, AU intervention could improve the injury of nucleus pulposus cells, reduce the apoptosis of nucleus pulposus cells and the expression of cleaved-caspase-3 and Bax, and increase the expression of Bcl-2, collagen Ⅱ, and aggrecan. Compared with IL-1β, AU could up-regulate the phosphorylation level of PI3K and mTOR, and LY294002 could reverse the injury of nucleus pulposus cells and improve ECM degradation induced by AU. In addition, AU also could save lowered rRNA levels of 5S, 18S, and 28S induced by IL-1β and improve RNA synthesis. PI3K inhibitor LY294002 intervention could reduce the promoting effect of AU on ribosome biogenesis. The above results suggest that AU can improve the injury of nucleus pulposus cells and ECM degradation, and its mechanism of action is related to its activation of the PI3K/mTOR pathway to promote ribosome biogenesis.
Nucleus Pulposus/cytology*
;
Extracellular Matrix/drug effects*
;
Animals
;
Iridoid Glucosides/pharmacology*
;
Apoptosis/drug effects*
;
Interleukin-1beta/metabolism*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Rats
;
Cell Proliferation/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Rats, Sprague-Dawley
;
Humans
;
Signal Transduction/drug effects*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
6.Synthesis, and anti-inflammatory activities of gentiopicroside derivatives.
Qi-Li ZHANG ; Peng-Fei XIA ; Xue-Jing PENG ; Xiao-Yu WU ; Hua JIN ; Jian ZHANG ; Lei ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):309-320
A series of 26 novel derivatives have been synthesized through structural modification of gentiopicroside, a lead COX-2 inhibitor. And their in vivo and in vitro anti-inflammatory activities have been investigated. The in vitro anti-inflammatory activities were evaluated against NO, PGE2, and IL-6 production in the mouse macrophage cell line RAW264.7 stimulated by LPS. Results showed that most compounds had good inhibitory activity. The in vivo inhibitory activities were further tested against xylene-induced mouse ear swelling. Results demonstrated that several compounds were more active than the parent compound gentiopicroside. The inhibition rate of the most active compound P23 (57.26%) was higher than positive control drug celecoxib (46.05%) at dose 0.28 mmol·kg-1. Molecular docking suggested that these compounds might bind to COX-2 and iNOS. Some of them, e.g P7, P14, P16, P21, P23, and P24, had high docking scores in accordance with their potency of the anti-inflammatory activitiy, that downregulation of the inflammatory factors, NO, PGE2, and IL-6, was possibly associated with the suppression of iNOS and COX-2. Therefore, these gentiopicroside derivatives may represent a novel class of COX-2 and iNOS inhibitors.
Animals
;
Anti-Inflammatory Agents/pharmacology*
;
Cyclooxygenase 2/chemistry*
;
Dinoprostone
;
Interleukin-6/metabolism*
;
Iridoid Glucosides
;
Mice
;
Molecular Docking Simulation
;
Pyridinolcarbamate
7.Mechanism of inhibitory effect of catalpol on TNF-α induced HAECs cell damage.
Can-Yao XU ; Yu-Kun ZHANG ; Hui-Jun SUN ; Hong ZHANG
China Journal of Chinese Materia Medica 2019;44(4):796-802
Catalpol is an iridoid glycoside extracted from the root of Rehmannia glutinosa. It has been reported to have antioxidant stress effects. Adenosine 5' monophosphate-activated protein kinase( AMPK) plays an important role in inhibiting oxidative stress. This study was designed to investigate the protective effects of catalpol on TNF-α-exposed human aorta epithelial cells( HAECs) via inhibit oxidative stress,and the relationship between catalpol and AMPK was detected by RNA interference technique. Levels of superoxide dismutase( SOD),malonaldehyde( MDA),glutathione( GSH) and lactate dehydrogenase( LDH) were measured with a colorimetric assay kit. The level of ROS was measured with FACS calibur. Western blot was employed to detect the protein expression of AMPK,phosphorylated-AMPK and NOX4. Finally,RNA interference technique was used to investigate the role of AMPK in catalpol-induced protective effects. TNF-α treatment decreased the expression of phosphorylated-AMPK protein level,however,catalpol could reverse the decreased phosphorylated-AMPK level. Catalpol could inhibit NOX4 protein expression and decrease ROS overproduction. After using AMPK siRNA that effects of catalpol on ROS overproduction and NOX4 protein expression inhibition were attenuated. The above results suggest that catalpol inhibits oxidative stress in TNF-α-exposed HAECs by activating AMPK.
Humans
;
Iridoid Glucosides
;
pharmacology
;
Iridoids
;
Oxidative Stress
;
Reactive Oxygen Species
;
Tumor Necrosis Factor-alpha
8.Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling.
Hua ZHANG ; Zhi-Min WU ; Ya-Ping YANG ; Aftab SHAUKAT ; Jing YANG ; Ying-Fang GUO ; Tao ZHANG ; Xin-Ying ZHU ; Jin-Xia QIU ; Gan-Zhen DENG ; Dong-Mei SHI
Journal of Zhejiang University. Science. B 2019;20(10):816-827
Catalpol is the main active ingredient of an extract from Radix rehmanniae, which in a previous study showed a protective effect against various types of tissue injury. However, a protective effect of catalpol on uterine inflammation has not been reported. In this study, to investigate the protective mechanism of catalpol on lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (bEECs) and mouse endometritis, in vitro and in vivo inflammation models were established. The Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway and its downstream inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence techniques. The results from ELISA and qRT-PCR showed that catalpol dose-dependently reduced the expression of pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, and chemokines such as C-X-C motif chemokine ligand 8 (CXCL8) and CXCL5, both in bEECs and in uterine tissue. From the experimental results of WB, qRT-PCR, and immunofluorescence, the expression of TLR4 and the phosphorylation of NF-κB p65 were markedly inhibited by catalpol compared with the LPS group. The inflammatory damage to the mouse uterus caused by LPS was greatly reduced and was accompanied by a decline in myeloperoxidase (MPO) activity. The results of this study suggest that catalpol can exert an anti-inflammatory impact on LPS-induced bEECs and mouse endometritis by inhibiting inflammation and activation of the TLR4/NF-κB signaling pathway.
Animals
;
Cattle
;
Chemokines/genetics*
;
Cytokines/genetics*
;
Endometritis/drug therapy*
;
Epithelial Cells/drug effects*
;
Female
;
Inflammation/prevention & control*
;
Iridoid Glucosides/therapeutic use*
;
Lipopolysaccharides/pharmacology*
;
Mice
;
NF-kappa B/physiology*
;
Signal Transduction/drug effects*
;
Toll-Like Receptor 4/physiology*
9.Protective effect of catalpolon destruction of tight junctions of high glucose induced BMECs.
Li ZOU ; Ke LIU ; Hui-Feng ZHU ; Shan FENG
China Journal of Chinese Materia Medica 2018;43(20):4118-4124
This paper aimed to observe the protective effect of catalpol on the high glucose induced destruction of tight junctions of rat primary brain microvascular endothelial cells (BMECs). Catalpol co-administrated with high glucose increased BMECs survival, decreased its ET-1 secretion, and improved transmembrane electrical resistance in a time-dependent manner. Furthermore, transmission electron microscopy was used to observe catalpol's protective effect on tight junction. Fluorescence staining displayed that catalpol reversed the rearrangement of the cytoskeleton protein F-actin and up-regulated the tight junction proteins claudin-5 and ZO-1, which were further demonstrated by the mRNA expression levels of claudin-5, occludin, ZO-1, ZO-2, ZO-3, -actintin, vinculin and cateinins. This study indicated that catalpol reverses the disaggregation of cytoskeleton actin in BMECs and up-regulates the expression of tight junction proteins, such as claudin-5, occludin, and ZO-1, and finally alleviates the increase in high glucose-induced BMECs injury.
Actin Cytoskeleton
;
drug effects
;
Actins
;
metabolism
;
Animals
;
Brain
;
cytology
;
Cells, Cultured
;
Claudin-5
;
metabolism
;
Endothelial Cells
;
drug effects
;
Glucose
;
Iridoid Glucosides
;
pharmacology
;
Phosphoproteins
;
Rats
;
Tight Junctions
;
drug effects
;
Zonula Occludens-1 Protein
;
metabolism
10.Effect of Picroside II on ERK1/2 Signal Pathway in Cerebral lschemic Injury Rats.
Ting-ting WANG ; Li ZHAI ; Hong-yan ZHANG ; Li ZHAO ; Yun-liang GUO
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(4):437-444
OBJECTIVETo explore the neuroprotective effect and mechanism of picroside II on extracellular regulated protein kinases1/2 (ERK1/2) signal transduction pathway in cerebral ischemia injuryrats. METHODS The middle cerebral artery occlusion (MCAO) model was established by inserting a monofilament into middle cerebral artery. Totally 96 successfully modeled Wistar rats were divided into the modelgroup, the treatment (picroside II) group, the Lipopolysachcaride (LPS) group, and the U0126 group according to random digit table. Each group was further divided into 3 subgroups, i.e. 6, 12, and 24 h sub-groups. Picroside II (20 mg/kg) was peritoneally injected to rats in the treatment group 2 h after ischemia.LPS (20 mg/kg) and Picroside II (20 mg/kg) were peritoneally injected to rats in the LPS group 2 h after ischemia. U0126-EtOH (20 mg/kg)and Picroside II (20 mg/kg) were peritoneally injected to rats in the U0126group 2 h after ischemia. Equal volume of normal saline was peritoneally injected to rats in the control groupand the model group. The neurobehavioral function was evaluated by modified neurological severity score(mNSS) test. The structure of neurons was observed using hematoxylin-eosinstaining (HE) staining. Theapoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression of phosphorylated extracellular signal-regulated protein kinase1,2 (pERK1,2) in cortex was detected using immunohistochemistry (IHC) and Western blot.
RESULTSAfter cerebral ischemia injury neurological impairment score increased, the damage of neuron in the cortical area was aggravated, apoptotic cells increased in the model group as time went by. The expression of pERK1/2 increased more significantly in the model group than in the control group (P <0.05). The damage of neuron in the cortical area was milder, while apoptotic cells decreased, the expression of pERK1f2 obviously decreased more in the treatment group and the U0126 group (P < 0.05). The early damage of neuron in the cortical area was more severe, apoptotic cells and the expression of pERK12 were comparatively higher in early stage of the LPS group, but the expression of pERK1/2 was somewhat decreased in late stage.
CONCLUSIONSActivating ERK12 pathway could mediate apoptosis and inflammatory reactions of neurons after cerebral ischemia injury. Picroside II could protect the nerve system possibly through reducing activation of ERKI2 pathway, inhibiting apoptosis of neurons and inflammation reaction.
Animals ; Apoptosis ; Brain Ischemia ; drug therapy ; Cinnamates ; pharmacology ; Infarction, Middle Cerebral Artery ; drug therapy ; Iridoid Glucosides ; pharmacology ; MAP Kinase Signaling System ; drug effects ; Neurons ; pathology ; Neuroprotective Agents ; pharmacology ; Random Allocation ; Rats ; Rats, Wistar

Result Analysis
Print
Save
E-mail