1.Comparison on chemical components of Angelicae Sinensis Radix before and after wine processing by HS-GC-IMS, HS-SPME-GC-MS, and UPLC-Q-Orbitrap-MS combined with chemometrics.
Xue-Hao SUN ; Jia-Xuan CHEN ; Jia-Xin YIN ; Xiao HAN ; Zhi-Ying DOU ; Zheng LI ; Li-Ping KANG ; He-Shui YU
China Journal of Chinese Materia Medica 2025;50(14):3909-3917
The study investigated the intrinsic changes in material basis of Angelicae Sinensis Radix during wine processing by headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS), headspace-solid phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS), and ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS) combined with chemometrics. HS-GC-IMS fingerprints of Angelicae Sinensis Radix before and after wine processing were established to analyze the variation trends of volatile components and characterize volatile small-molecule substances before and after processing. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed for differentiation and difference analysis. A total of 89 volatile components in Angelicae Sinensis Radix were identified by HS-GC-IMS, including 14 unsaturated hydrocarbons, 16 aldehydes, 13 ketones, 9 alcohols, 16 esters, 6 organic acids, and 15 other compounds. HS-SPME-GC-MS detected 118 volatile components, comprising 42 unsaturated hydrocarbons, 11 aromatic compounds, 30 alcohols, 8 alkanes, 6 organic acids, 4 ketones, 7 aldehydes, 5 esters, and 5 other volatile compounds. UPLC-Q-Orbitrap-MS identified 76 non-volatile compounds. PCA revealed distinct clusters of raw and wine-processed Angelicae Sinensis Radix samples across the three detection methods. Both PCA and OPLS-DA effectively discriminated between the two groups, and 145 compounds(VIP>1) were identified as critical markers for evaluating processing quality, including 4-methyl-3-penten-2-one, ethyl 2-methylpentanoate, and 2,4-dimethyl-1,3-dioxolane detected by HS-GC-IMS, angelic acid, β-pinene, and germacrene B detected by HS-SPME-GC-MS, and L-tryptophan, licoricone, and angenomalin detected by UPLC-Q-Orbitrap-MS. In conclusion, the integration of the three detection methods with chemometrics elucidates the differences in the chemical material basis between raw and wine-processed Angelicae Sinensis Radix, providing a scientific foundation for understanding the processing mechanisms and clinical applications of wine-processed Angelicae Sinensis Radix.
Wine/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Angelica sinensis/chemistry*
;
Solid Phase Microextraction/methods*
;
Drugs, Chinese Herbal/isolation & purification*
;
Chemometrics
;
Volatile Organic Compounds/chemistry*
;
Principal Component Analysis
;
Ion Mobility Spectrometry/methods*
2.Analysis of volatile organic compounds (VOCs) fingerprint of raw and honey-fried licorice based on headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS).
Qian ZHOU ; Yan-Peng DAI ; Wei GUO ; Ping WANG ; Dian-Hua SHI
China Journal of Chinese Materia Medica 2020;45(16):3857-3862
Licorice is one of the most commonly used traditional Chinese medicine. In clinic, raw licorice and honey-fried licorice are used in medicines, with the main effects in clearing away heat and detoxifying, moistening lungs and removing phlegm. Honey-fried licorice has effects in nourishing the spleen and stomach and replenishing Qi and pulse. Because traditional Chinese medicine exerts the effects through multiple components and multiple targets, the index components used in the quality evaluation of licorice are often difficult to reflect their real quality. In addition, most of studies for the quality standards have shown that honey-fried licorice are the same as licorice, with a lack of quality evaluation standards that can demonstrate their processing characteristics. The quality of medicine is directly related to its clinical efficacy, so it is necessary to establish a more effective quality control method. Licorice has a beany smell, which is one of the main quality identification characteristics. In this study, by taking advantage of the odor characteristics, a headspace-gas chromatography-ion migration mass spectrometry technology was used to establish a quality evaluation method. A total of 76 volatile components were identified. Through the dynamic principal component analysis, 7 kinds of volatile substances in raw licorice and 13 kinds of volatile substances in honey-fried licorice were statistically obtained, and could be taken as index components for the quality evaluation of raw and honey-fried licorice, respectively. This study could help realize the combination and unification of modern detection and traditional quality evaluation methods, and make a more realistic evaluation for the quality of licorice.
Gas Chromatography-Mass Spectrometry
;
Glycyrrhiza
;
Honey
;
analysis
;
Ion Mobility Spectrometry
;
Volatile Organic Compounds
;
analysis

Result Analysis
Print
Save
E-mail