1.Therapeutic effects of inulin-type oligosaccharides of Morinda officinalis on Streptococcus pneumoniae meningitis in mice.
Zehan LI ; Meng LIANG ; Gencheng HAN ; Xuewu ZHANG
Journal of Southern Medical University 2025;45(3):577-586
OBJECTIVES:
To investigate the therapeutic effects of inulin-type oligosaccharides of Morinda officinalis (IOMO) in a murine model of Streptococcus pneumoniae meningitis (SPM) and explore its possible mechanisms.
METHODS:
A total of 120 male C57BL/6J mice were randomly assigned into Sham, SPM+Saline, SPM+IOMO (25 mg/kg), and SPM+IOMO (50 mg/kg) groups. After modeling, the mice received daily gavage of saline or IOMO at the indicated doses for 7 consecutive days, and the changes in symptom scores and mortality of the mice were monitored. Brain pathology and neuronal injury of the mice were assessed using HE and Nissl staining, and qRT-PCR was performed to detect mRNA levels of the inflammatory mediators. Brain edema and blood-brain barrier (BBB) permeability of the mice were evaluated by measuring brain water content and Evans blue (EB) staining; Western blotting was used to analyze the expressions of BBB-associated proteins, and flow cytometry was employed to detect IFN‑γ expression level in the infiltrating lymphocytes. Open-field test (OFT) and novel object recognition test (NORT) were conducted to assess learning and memory ability of the mice on day 21 after modeling.
RESULTS:
IOMO treatment at 50 mg/kg significantly reduced the symptom scores and mortality rate of SPM mice, alleviated brain damage, and downregulated mRNA levels of IL-6, TNF‑α, IL-1β, IL-18, IFN‑γ, iNOS, NLRP3, ASC, caspase-1 and GSDMD in the brain tissue. IOMO treatment also decreased brain water content and EB leakage, upregulated VE-cadherin and occludin expressions, and suppressed AQP4, iNOS, and IFN‑γ levels of the mice. IOMO-treated mice exhibited improved learning and memory compared with the saline-treated mice on day 21 after SPM modeling.
CONCLUSIONS
IOMO alleviates SPM symptoms, reduces mortality, and mitigates cognitive deficits in mice possibly by suppressing cerebral inflammation and protecting BBB functions.
Animals
;
Morinda/chemistry*
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Meningitis, Pneumococcal/drug therapy*
;
Blood-Brain Barrier/metabolism*
;
Inulin/therapeutic use*
;
Oligosaccharides/therapeutic use*
;
Disease Models, Animal
;
Interferon-gamma/metabolism*
;
Brain Edema
2.Inulin Can Alleviate Metabolism Disorders in ob/ob Mice by Partially Restoring Leptin-related Pathways Mediated by Gut Microbiota.
Xiaofeng SONG ; Liang ZHONG ; Na LYU ; Fei LIU ; Boxing LI ; Yanan HAO ; Yong XUE ; Jing LI ; Yuqing FENG ; Yue MA ; Yongfei HU ; Baoli ZHU
Genomics, Proteomics & Bioinformatics 2019;17(1):64-75
Inulin has been used as a prebiotic to alleviate glucose and lipid metabolism disorders in mice and humans by modulating the gut microbiota. However, the mechanism underlying the alleviation of metabolic disorders by inulin through interactions between the gut microbiota and host cells is unclear. We use ob/ob mice as a model to study the effect of inulin on the cecal microbiota by 16S rRNA gene amplicon sequencing and its interaction with host cells by transcriptomics. The inulin-supplemented diet improved glucose and lipid metabolism disorder parameters in ob/ob mice, alleviating fat accumulation and glucose intolerance. The α diversity of gut microbial community of ob/ob mice was reduced after inulin treatment, while the β diversity tended to return to the level of wild type mice. Interestingly, Prevotellaceae UCG 001 (family Prevotellaceae) was obviously enriched after inulin treatment. A comparative analysis of the gene expression profile showed that the cecal transcriptome was changed in leptin gene deficiency mice, whereas the inulin-supplemented diet partially reversed the changes in leptin gene-related signaling pathways, especially AMPK signaling pathway, where the levels of gene expression became comparable to those in wild type mice. Further analysis indicated that Prevotellaceae UCG 001 was positively correlated with the AMPK signaling pathway, which was negatively correlated with markers of glycolipid metabolism disorders. Our results suggest that the inulin-supplemented diet alleviates glucose and lipid metabolism disorders by partially restoring leptin related pathways mediated by gut microbiota.
AMP-Activated Protein Kinases
;
metabolism
;
Animals
;
Cecum
;
enzymology
;
metabolism
;
microbiology
;
Gastrointestinal Microbiome
;
drug effects
;
Inulin
;
therapeutic use
;
Leptin
;
genetics
;
Male
;
Metabolic Diseases
;
drug therapy
;
enzymology
;
metabolism
;
microbiology
;
Mice
;
Mice, Obese
;
Prebiotics
;
Signal Transduction
;
drug effects
;
Transcriptome
3.Therapeutic effect of inulin on enteric hyperoxaluria in rats.
Jing TIAN ; Jie PENG ; Wei-hong GE ; Jun ZHANG
Acta Academiae Medicinae Sinicae 2014;36(3):313-316
OBJECTIVETo observe the therapeutic effect of inulin on enteric hyperoxaluria in rats.
METHODSIn experimental A, 24 healthy male Sprague-Dawley rats received an oxalate-free diet on day 1, a high-oxalate diet (oxalate, 74.82 mg/100 g feed stuffs) on days 2 and 3, and plus 2 g inulin to each rat on day 3. The 24-hour urinary volume, concentrations of urinary oxalate and urine creatinine were measured, and 24-hour urinary oxalate excretion was calculated. In experimental B, 24 healthy male Sprague-Dawley rats were equally randomized into control group and inulin group, Each rat received a high oxalate diet (oxalate, 74.82 mg/100 g feedstuffs), and plus 2 g inulin in inulin group. The 24-hour urinary oxalate excretion was calculated in both two groups.
RESULTSIn experimental A, the 24-hour urinary oxalate excretion varied with time (F=11.481, P=0.035). The 24-hour urinary oxalate excretion significantly increased on day 2 compared with that on day 1 (P=0.026) and day 3 (P=0.037); it significantly increased on day 3 compared with day 1 (P=0.004). In experimental B, the 24-hour urinary oxalate excretion significantly decreased in inulin group compared with the control (P=0.011).
CONCLUSIONInulin may have potential therapeutic effect on enteric hyperoxaluria in rats.
Animals ; Disease Models, Animal ; Hyperoxaluria ; drug therapy ; Inulin ; therapeutic use ; Male ; Rats ; Rats, Sprague-Dawley ; Treatment Outcome

Result Analysis
Print
Save
E-mail