1.Research on the mechanism of gentiopicroside preventing macrophage-mediated liver fibrosis by regulating the MIF-SPP1 signaling pathway in hepatic stellate cells.
Jixu WANG ; Yingbin ZHU ; Maoli CHEN ; Yongfeng HAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):593-602
Objective To explore the mechanism by which gentiopicroside (GPS) prevents macrophage-mediated hepatic fibrosis by regulating the macrophage migration inhibitory factor (MIF)-secreted phosphoprotein 1 (SPP1) signaling pathway in hepatic stellate cells. Methods LX-2 cells were divided into control group, transforming growth factor β(TGF-β) group, and TGF-β combined with GPS (25, 50, 100, 150 μmol/mL) groups. Cell proliferation was detected by EDU assay, cell invasion was assessed by TranswellTM assay, and the protein expressions of α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) were measured by Western blot. M1-type macrophage-conditioned medium (M1-CM) was used to treat LX-2 cells in the TGF-β group and TGF-β combined with GPS group. The concentrations of inducible nitric oxide synthase (iNOS) and arginase 1 (Arg1) in the cell supernatant, as well as cell proliferation, invasion ability, and the expressions of α-SMA and COL1A1 were detected. Bioinformatics analysis was performed to identify the target intersections of GPS, hepatic fibrosis, and macrophage-related genes. Drug affinity responsive target stability (DARTS) experiments and Western blot were used to verify the regulatory effect of GPS on MIF. Furthermore, LX-2 cells were divided into control group, TGF-β group, TGF-β combined with M2-CM group, TGF-β and oe-NC combined with M2-CM group, and TGF-β and oe-MIF combined with M2-CM group to analyze the concentrations of iNOS and Arg1 in the cell supernatant, as well as changes in cell proliferation, invasion, and the expressions of α-SMA and COL1A1. LX-2 cells were also divided into control group, TGF-β group, TGF-β combined with oe-NC group, TGF-β combined with oe-MIF group, and TGF-β and oe-MIF combined with GPS group to determine the protein expressions of MIF and SPP1 by Western blot. A rat model of hepatic fibrosis was constructed to explore the potential therapeutic effects of GPS on hepatic fibrosis in vivo. Results Compared with the control group, the proliferation and invasion abilities of LX-2 cells in the TGF-β group were increased, and the protein expressions of α-SMA and COL1A1 were enhanced. GPS intervention inhibited the proliferation and invasion of LX-2 cells under TGF-β conditions and reduced the expressions of α-SMA and COL1A1. Compared with the control group, the concentration of iNOS in the cell supernatant of the TGF-β group was upregulated, while the concentration of Arg1 was decreased. M1-CM treatment further increased the concentration of iNOS, decreased the concentration of Arg1, and promoted cell proliferation and invasion, as well as upregulated the expressions of α-SMA and COL1A1 on the basis of TGF-β intervention. However, GPS could reverse the effects of M1-CM intervention. Bioinformatics analysis revealed that MIF was one of the target intersections of GPS, hepatic fibrosis, and macrophage-related genes, and GPS could target and inhibit its expression. Compared with the TGF-β group, after M2-CM intervention, the concentration of iNOS in the cell supernatant decreased, the concentration of Arg1 increased, the proliferation and invasion abilities of LX-2 cells were reduced, and the expressions of α-SMA and COL1A1 were weakened. However, overexpression of MIF reversed the effects of M2-CM intervention. Western blot results showed that compared with the control group, the protein expressions of MIF and SPP1 were enhanced in the TGF-β group. Overexpression of MIF further enhanced the expressions of MIF and SPP1, while GPS intervention inhibited the expressions of MIF and SPP1. In the animal experiment, GPS intervention treatment alleviated liver injury in rats with hepatic fibrosis and inhibited the expressions of MIF and SPP1, as well as α-SMA and COL1A1 in liver tissue. Conclusion GPS may prevent macrophage-mediated hepatic fibrosis by inhibiting the MIF-SPP1 signaling pathway in hepatic stellate cells.
Hepatic Stellate Cells/metabolism*
;
Signal Transduction/drug effects*
;
Macrophage Migration-Inhibitory Factors/genetics*
;
Liver Cirrhosis/prevention & control*
;
Macrophages/drug effects*
;
Iridoid Glucosides/pharmacology*
;
Humans
;
Cell Proliferation/drug effects*
;
Animals
;
Cell Line
;
Collagen Type I/metabolism*
;
Collagen Type I, alpha 1 Chain
;
Intramolecular Oxidoreductases/genetics*
;
Rats
;
Transforming Growth Factor beta/pharmacology*
;
Actins/metabolism*
2.Inhibitory Effects of Nardostachys Jatamansi DC. Volatile Oil on Psychological Factors SP/CORT-Induced Hyperpigmentation.
Man YANG ; Kang CHENG ; Jie GU ; Hua-Li WU ; Yi-Ming LI
Chinese journal of integrative medicine 2025;31(12):1097-1104
OBJECTIVE:
To explore the inhibitory effects of Nardostachys Jatamansi DC. volatile oil (NJVO) on psychological factors substance P (SP)/cortisol (CORT)-induced hyperpigmentation.
METHODS:
The model of psychologically-induced hyperpigmentation of B16F10 cells was created using SP (10 nmol/L) + CORT (10 µmol/L) for 72 h. The levels of melanin content, tyrosinase (TYR) activity using NaOH lysis and L-dihydroxyphenylalanine (L-DOPA) oxidation methods were assessed, respectively. The effect of NJVO on SP/CORT-induced normal human skin tissue pigmentation was detected by Masson staining. Protein expressions of tyrosinase-related protein 1 (TRP-1), tyrosinase-relative protein 2 (DCT), and microphthalmia-associated transcription factor were determined using Western blot. The melanosome number, maturation, and melanosomal structure changes were detected through transmission electron microscopy and immunofluorescence experiments. In vivo, zebrafish pigment content was evaluated in SP/CORT-induced zebrafish hyperpigmentation model.
RESULTS:
NJVO significantly reduced the melanin content (P<0.01) and inhibited tyrosinase activity (P<0.01), the pigmentation of the normal skin tissue in the NJVO group was significantly lower than that in the SP/CORT group (P<0.05). And NJVO considerably downregulated expressions of melanogenesis-related proteins (TYR, TRP-1, DCT) in cells (P<0.01). In addition, the number of melanosomes was decreased and the dentrites formation of B16F10 cells was inhibited after NJVO treatment (P<0.01). In vivo, NJVO significantly reduced the pigment content in the zebrafish body (P<0.01).
CONCLUSION
NJVO effectively reversed SP/CORT-induced hyperpigmentation by suppressing the activity and expression of TYR and TRPs and inhibiting melanosome maturation in mouse B16F10 melanoma cells.
Animals
;
Hyperpigmentation/psychology*
;
Zebrafish
;
Oils, Volatile/therapeutic use*
;
Melanins/metabolism*
;
Humans
;
Monophenol Monooxygenase/metabolism*
;
Mice
;
Nardostachys/chemistry*
;
Substance P
;
Hydrocortisone
;
Skin Pigmentation/drug effects*
;
Cell Line, Tumor
;
Melanosomes/ultrastructure*
;
Microphthalmia-Associated Transcription Factor/metabolism*
;
Melanoma, Experimental
;
Oxidoreductases/metabolism*
;
Intramolecular Oxidoreductases/metabolism*
3.Deciphering the Role of VIM, STX8, and MIF in Pneumoconiosis Susceptibility: A Mendelian Randomization Analysis of the Lung-Gut Axis and Multi-Omics Insights from European and East Asian Populations.
Chen Wei ZHANG ; Bin Bin WAN ; Yu Kai ZHANG ; Tao XIONG ; Yi Shan LI ; Xue Sen SU ; Gang LIU ; Yang Yang WEI ; Yuan Yuan SUN ; Jing Fen ZHANG ; Xiao YU ; Yi Wei SHI
Biomedical and Environmental Sciences 2025;38(10):1270-1286
OBJECTIVE:
Pneumoconiosis, a lung disease caused by irreversible fibrosis, represents a significant public health burden. This study investigates the causal relationships between gut microbiota, gene methylation, gene expression, protein levels, and pneumoconiosis using a multi-omics approach and Mendelian randomization (MR).
METHODS:
We analyzed gut microbiota data from MiBioGen and Esteban et al. to assess their potential causal effects on pneumoconiosis subtypes (asbestosis, silicosis, and inorganic pneumoconiosis) using conventional and summary-data-based MR (SMR). Gene methylation and expression data from Genotype-Tissue Expression and eQTLGen, along with protein level data from deCODE and UK Biobank Pharma Proteomics Project, were examined in relation to pneumoconiosis data from FinnGen. To validate our findings, we assessed self-measured gut flora from a pneumoconiosis cohort and performed fine mapping, drug prediction, molecular docking, and Phenome-Wide Association Studies to explore relevant phenotypes of key genes.
RESULTS:
Three core gut microorganisms were identified: Romboutsia ( OR = 0.249) as a protective factor against silicosis, Pasteurellaceae ( OR = 3.207) and Haemophilus parainfluenzae ( OR = 2.343) as risk factors for inorganic pneumoconiosis. Additionally, mapping and quantitative trait loci analyses revealed that the genes VIM, STX8, and MIF were significantly associated with pneumoconiosis risk.
CONCLUSIONS
This multi-omics study highlights the associations between gut microbiota and key genes ( VIM, STX8, MIF) with pneumoconiosis, offering insights into potential therapeutic targets and personalized treatment strategies.
Humans
;
Male
;
East Asian People/genetics*
;
Europe
;
Gastrointestinal Microbiome
;
Lung
;
Macrophage Migration-Inhibitory Factors/metabolism*
;
Mendelian Randomization Analysis
;
Multiomics
;
Pneumoconiosis/microbiology*
;
Intramolecular Oxidoreductases
4.A preliminary study of markers for human hair follicle melanin stem cell.
Xing-Yu MEI ; Zhou-Wei WU ; Cheng-Zhong ZHANG ; Yue SUN ; Wei-Min SHI
Chinese Medical Journal 2019;132(9):1117-1119
Antigens, CD34
;
metabolism
;
Biomarkers
;
metabolism
;
Cell Differentiation
;
physiology
;
Hair Follicle
;
cytology
;
Humans
;
Intramolecular Oxidoreductases
;
metabolism
;
Keratinocytes
;
metabolism
;
Melanins
;
metabolism
;
Melanocytes
;
metabolism
;
PAX3 Transcription Factor
;
metabolism
;
Stem Cells
;
metabolism
5.An oriental melon 9-lipoxygenase gene CmLOX09 response to stresses, hormones, and signal substances.
Li-Jun JU ; Chong ZHANG ; Jing-Jing LIAO ; Yue-Peng LI ; Hong-Yan QI
Journal of Zhejiang University. Science. B 2018;19(8):596-609
In plants, lipoxygenases (LOXs) play a crucial role in biotic and abiotic stresses. In our previous study, five 13-LOX genes of oriental melon were regulated by abiotic stress but it is unclear whether the 9-LOX is involved in biotic and abiotic stresses. The promoter analysis revealed that CmLOX09 (type of 9-LOX) has hormone elements, signal substances, and stress elements. We analyzed the expression of CmLOX09 and its downstream genes-CmHPL and CmAOS-in the leaves of four-leaf stage seedlings of the oriental melon cultivar "Yumeiren" under wound, hormone, and signal substances. CmLOX09, CmHPL, and CmAOS were all induced by wounding. CmLOX09 was induced by auxin (indole acetic acid, IAA) and gibberellins (GA3); however, CmHPL and CmAOS showed differential responses to IAA and GA3. CmLOX09, CmHPL, and CmAOS were all induced by hydrogen peroxide (H2O2) and methyl jasmonate (MeJA), while being inhibited by abscisic acid (ABA) and salicylic acid (SA). CmLOX09, CmHPL, and CmAOS were all induced by the powdery mildew pathogen Podosphaera xanthii. The content of 2-hexynol and 2-hexenal in leaves after MeJA treatment was significantly higher than that in the control. After infection with P. xanthii, the diseased leaves of the oriental melon were divided into four levels-levels 1, 2, 3, and 4. The content of jasmonic acid (JA) in the leaves of levels 1 and 3 was significantly higher than that in the level 0 leaves. In summary, the results suggested that CmLOX09 might play a positive role in the response to MeJA through the hydroperoxide lyase (HPL) pathway to produce C6 alcohols and aldehydes, and in the response to P. xanthii through the allene oxide synthase (AOS) pathway to form JA.
Abscisic Acid
;
Acetates/chemistry*
;
Aldehyde-Lyases/metabolism*
;
Aldehydes/chemistry*
;
Cucurbitaceae/genetics*
;
Cyclopentanes/chemistry*
;
Cytochrome P-450 Enzyme System/metabolism*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Hormones/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Intramolecular Oxidoreductases/metabolism*
;
Lipoxygenase/metabolism*
;
Oxylipins/chemistry*
;
Plant Leaves/genetics*
;
Plant Proteins/metabolism*
;
Promoter Regions, Genetic
;
Salicylic Acid/chemistry*
;
Seedlings/metabolism*
;
Signal Transduction
;
Stress, Physiological
;
Transgenes
6.Effect of 15-Deoxy-△(12,14)-prostaglandin J2 on Expression of Macrophage Migration Inhibitory Factor in Mouse Monocyte/macrophage Cell Line J774A.1.
Wei-Yang LI ; Yu-Meng SHI ; Xin LIU ; Lin YANG ; Li-Ying L I
Acta Academiae Medicinae Sinicae 2016;38(3):247-252
Objective To investigate the effect of 15-Deoxy-△(12,14)-prostaglandin J2 (15 d-PGJ2) on the expression of macrophage migration inhibitory factor (MIF) and its underlying mechanism in J774A.1. Methods The murine monocyte/macrophage cell line J774A.1 were divided into six groups:lipopolysaccharide (LPS) group,incubated with 1 μg/ml LPS for 1 h;normal control group,incubated with PBS for 1 h;negative control group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h;15 d-PGJ2 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h followed by 1 μg/ml LPS for 1 h;GW9662 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h following GW9662 10 μmol/L for 1 h,and then incubated with 1 μg/ml LPS for 1 h;and Vehicle group,control of GW9662,GW9662 was replaced by its solvent DMSO. The expression of MIF was detected via immunofluorescence and agarose gel electrophoresis. RT-qPCR and Western blotting were used to test whether 15 d-PGJ2 could regulate mRNA and protein expression of MIF in J774A.1 upon LPS challenge. The effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist GW9662 on the regulation of MIF by 15 d-PGJ2 was observed. The effects of 15 d-PGJ2 on the nuclear translocation of PPAR-γ upon LPS challenge were detected via high content screening analysis. Results MIF DNA and protein expressions were detected in J774A.1. MIF mRNA expression was up-regulated (1.75±0.09,P=0.037) when challenged with LPS and 15 d-PGJ2 inhibited its upregulation (0.84±0.08,P=0.026) in J774A.1. The protein level was consistent with the mRNA level. PPAR-γ antagonist GW9662 reversed the effect of 15 d-PGJ2 (mRNA,1.48±0.06,P=0.016;protein,1.28). Furthermore,nuclear translocation of PPAR-γ was regulated by 15 d-PGJ2 in J774A.1 upon LPS challenge(1.39±0.02 vs. 1.01±0.03,P=0.003). Conclusion 15 d-PGJ2 may down-regulate the MIF expression in J774A.1 in a PPAR-γ-dependent manner.
Anilides
;
pharmacology
;
Animals
;
Cell Line
;
Intramolecular Oxidoreductases
;
metabolism
;
Lipopolysaccharides
;
Macrophage Migration-Inhibitory Factors
;
metabolism
;
Mice
;
Monocytes
;
drug effects
;
PPAR gamma
;
antagonists & inhibitors
;
Prostaglandin D2
;
analogs & derivatives
;
pharmacology
7.Interaction of MIF gene -173G/C polymorphism and GPX1 gene 594C/T polymorphism with high-fat diet in ulcerative colitis.
Chaoxian ZHANG ; Like GUO ; Yongmei QIN
Chinese Journal of Medical Genetics 2016;33(1):85-90
OBJECTIVETo investigate the interaction of single nucleotide polymorphisms of macrophage migration inhibitory factor (MIF) gene -173G/C and glutathione peroxidase 1(GPX1) gene 594C/T polymorphisms and high-fat diet in ulcerative colitis (UC).
METHODSThe genetic polymorphisms of MIF -173G/C and GPX1 594C/T were determined with a polymorphism-polymerase chain reaction (PCR)-endonuclease method in peripheral blood leukocytes derived from 1500 UC cases and 1500 healthy controls.
RESULTSThe frequencies of MIF -173CC and GPX1 594TT were 55.60% and 55.73% in the UC cases and 16.67% and 16.47% in the healthy controls, respectively. Statistical tests also showed a significant difference in the frequencies between the two groups (P<0.01; P<0.01, respectively). Individuals carrying MIF -173CC also had a significantly higher risk of UC compared with those with MIF -173GG (OR=6.8662, 95%CI: 4.5384-9.6158). Individuals carrying GPX1 594TT had a high risk of UC (OR=7.0854, 95%CI: 4.4702-10.5283). Combined analysis showed that the percentages of MIF -173CC/GPX1 594TT in the UC and control groups were 31.00% and 2.73%, respectively (P<0.01). Individuals carrying MIF -173CC/GPX1 594TT had a high risk of UC (OR=49.0113, 95%CI: 31.7364-61.8205). The high-fat diet rate of the case group was significantly higher than that of the control group (OR=3.3248, 95%CI: 1.9461-5.0193, P<0.01), and statistic analysis suggested an interaction between high-fat diet and MIF -173CC and GPX1 594TT which increase risk of UC (γ =6.9293; γ =6.9942).
CONCLUSIONMIF -173CC and GPX1 594TT and high-fat diet are the risk factors for UC, and the significant interactions between genetic polymorphisms of MIF -173G/C, GPX1 594C/T and high-fat diet may increase the risk for UC.
Case-Control Studies ; Colitis, Ulcerative ; enzymology ; genetics ; metabolism ; psychology ; Diet, High-Fat ; adverse effects ; Dietary Fats ; metabolism ; Feeding Behavior ; Female ; Gene-Environment Interaction ; Genetic Predisposition to Disease ; Glutathione Peroxidase ; genetics ; Humans ; Intramolecular Oxidoreductases ; genetics ; Macrophage Migration-Inhibitory Factors ; genetics ; Male ; Polymorphism, Single Nucleotide ; Risk Factors
8.The expression and role of MIF, NF-κB and IL-1β in nasal polyps.
Chunmiao LI ; Huijuan MA ; Yunpeng BA
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2016;30(3):220-225
OBJECTIVE:
To investigate the expression of MIF, NF-κB p65 and IL-1β in the tissue of nasal polyps and normal inferior turbinate, to analyze their relevance, and to explore their role in nasal polyps.
METHOD:
The infiltrating results of EOS and others inflammatory cells in 48 cases diagnosed as nasal polyps (nasal polyps group) were detected by HE staining, and the expression of MIF, NF-κB p65 and IL-1β were investigated by immunohistochemistry. Twenty-one patients who were performed septoplasty orthotics were included as the control group; the VAS and Lund-Kennedy score were used to evaluate the degree of nasal polyps in patients and the correlation analysis was conducted between the disease severity and the expression levels of this three factors.
RESULT:
(1) The infiltrating results of EOS and the expression level of MIF, NF-κB p65, IL-1β in nasal polyps group are obviously higher than these in the control group (P < 0.05); Spearman correlation analysis shows that MIF, NF-κb p65 and IL-1β are positively correlated with each other (r = 0.74, 0.66, 0.60, P < 0.05); the nuclear activation rate of NF-κB p65 is positively correlated with MIF, IL-1β (r = 0.67, 0.63, P < 0.05); the infiltration degree of EOS is positively correlated with MIF, IL-1β (r = 0.49, 0.55, P < 0.05), but has no correlation with the NF-κB p65 and its nuclear activation rate. (2) The VAS grade of the nasal polyps group is 8.24 ± 1.72 and the nasal endoscopic examination grade is 8.63 ± 3.81. Spearman correlation analysis shows that the VAS grade is positively correlated with the level of MIF (r = 0.71, P < 0.05), but had no correlation with NF-κB p65, its nuclear activation rate and IL-1β. The nasal endoscopic examination grade is positively correlated with MIF and the nuclear activation rate of NF-κB p65 (r = 0.79, 0.73, P < 0.05), but has no correlation with the level of NF-κB p65 and IL-1β (P > 0.05).
CONCLUSION
MIF, NF-κB p65 and IL-1β may promote the development of the nasal polyps, and there may exist the IL-1β--NF-κB--MIF approach in nasal polyps; MIF and NF-κB may participate in maintaining physiological function of inferior turbinate and have relations with the lightest sustained inflammation of inferior turbinate. The MIF and NF-κB p65 nuclear activation rate can be used as a standard of the nasal polyp severity and the judgement prognosis.
Humans
;
Inflammation
;
metabolism
;
Interleukin-1beta
;
metabolism
;
Intramolecular Oxidoreductases
;
metabolism
;
Macrophage Migration-Inhibitory Factors
;
metabolism
;
Nasal Polyps
;
metabolism
;
Transcription Factor RelA
;
metabolism
9.Cinnamaldehyde decreases interleukin-1beta induced PGE2 production by down-regulation of mPGES-1 and COX-2 expression in mouse macrophage RAW264.7 cells.
Changbin ZHANG ; Canghai LI ; Feng SUI ; Yin LU ; Lanfang LI ; Shuying GUO ; Na YANG ; Daitao GENG ; Tingliang JIANG
China Journal of Chinese Materia Medica 2012;37(9):1274-1278
Cinnamaldehyde was shown to have significant anti-inflammatory and anti-pyretic actions in studies from both others' and our lab. Prostaglandin E2 (PGE2) plays a key role in generation of these pathological states, while PGE, synthase-1 (mPGES-1) is one of crucial biological elements in the process of PGE2 production. And as a downstream inducible terminal prostaglandin synthase of COX-2, mPGES-1 is now regarded as a more promising novel drug target than COX-2 and is attracting more and more attention from both academia and pharmaceutical industry. The purpose of present study was to further investigate the anti-inflammatory and antipyretic molecular mechanisms of cinnamaldehyde based on the mouse macrophage cell line RAW264. 7 in vitro. The PGE2 was identified by using the method of enzyme-linked immunosorbent assay (ELISA) and the expression of COX-2 and mPGES-1 at mRNA and protein levels was detected by the Real-time PCR and Western blotting methods respectively. The experimental results suggested that cinnamaldehyde could evidently reverse the increased production of PGE2induced by IL-1beta. Moreover, the up-regulated expression levels of mPGES-1 and COX-2 were significatly decreased. Together, these results provide compelling evidence that the down-regulated actions to both the production of PGE2 as well as the expression of mPGES-I might account for, at least in part, the anti-inflammatory and anti-pyretic effects of cinnamaldehyde.
Acrolein
;
analogs & derivatives
;
pharmacology
;
Animals
;
Blotting, Western
;
Cell Line
;
Dinoprostone
;
metabolism
;
Interleukin-1beta
;
pharmacology
;
Intramolecular Oxidoreductases
;
metabolism
;
Macrophages
;
drug effects
;
metabolism
;
Mice
;
Prostaglandin-E Synthases
;
Real-Time Polymerase Chain Reaction
10.Differential proteins in esophageal squamous cell line EC9706/CDDP identified by SILAC quantitative proteomic approach.
Pan WANG ; Xiao-Fei GAO ; Wang-Yu BU ; Juan ZHANG ; Yan-Fang HOU ; Bao-Hua NIU ; Wei WANG ; Yuan-Fang MA ; Yi-Jun QI
Acta Pharmaceutica Sinica 2012;47(3):409-416
Multidrug resistance (MDR) is one of the main causes leading to the failure in cancer treatment. Differential proteins between esophageal squamous cell carcinoma (ESCC) cell line EC9706 and its cisdiamminedichloroplatinum (CDDP)-resistant subline EC9706/CDDP revealed by quantitative analysis may provide deeper insights into the molecular mechanisms of MDR implicated in ESCC. EC9706/CDDP was generated by exposure of its parental sensitive EC9706 to a step-wise increase of CDDP concentration during EC9706 cultivation. The stable isotope labeling with amino acids in cell culture (SILAC) was used to label EC9706 and EC9706/CDDP with heavy and light medium, separately. Mixed peptides derived from EC9706 and EC9706/CDDP were analyzed by high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS/MS) and subsequently subjected to bioinformatics analysis to identify differential proteins between EC9706 and EC9706/CDDP. Compared to parental EC9706, EC9706/CDDP manifested phenotypes of slow proliferation, cell pleomorphology, atypia and increased resistant-index 3.23. Seventy-four differential proteins identified in the present study belongs to various families with multiple functions, such as cytoskeleton (20%), energy metabolism (11%), transcription regulation and DNA repair (11%), redox homeostasis (9.5%), protein biosynthesis and mRNA processing (12%), ribosome constituent (8.1%), molecular chaperone (8.1%), immunity/inflammation (5.4%), intracellular transport (5.4%) and nucleosome assembly (2.7%), which indicated that development of MDR is a complicated process involving dysregulation of multiple molecules and pathways. The data is of great value for in-depth elucidation of molecular mechanisms of the MDR implicated in ESCC and may represent potential molecular targets for future therapeutic development.
Carcinoma, Squamous Cell
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Chromatography, High Pressure Liquid
;
Cisplatin
;
pharmacology
;
Drug Resistance, Multiple
;
Drug Resistance, Neoplasm
;
Esophageal Neoplasms
;
metabolism
;
pathology
;
HSP70 Heat-Shock Proteins
;
metabolism
;
Humans
;
Intramolecular Oxidoreductases
;
metabolism
;
Isotope Labeling
;
Macrophage Migration-Inhibitory Factors
;
metabolism
;
Proteome
;
metabolism
;
Proteomics
;
Spectrometry, Mass, Electrospray Ionization
;
Tandem Mass Spectrometry
;
Thioredoxins
;
metabolism

Result Analysis
Print
Save
E-mail