1.Transcriptome sequencing analysis of gene expression differences in intestinal organoids of septic mice and the protective effects of myeloid differentiation factor 88 inhibitor.
Liyan GUO ; Na XUE ; Qing WANG ; Hongyun TENG ; Lili BAI ; Kai WEI ; Yuantao LI ; Qingguo FENG
Chinese Critical Care Medicine 2025;37(10):916-923
OBJECTIVE:
To elucidate the molecular mechanisms underlying sepsis-induced injury in mouse intestinal organoids and investigate the possible mechanisms or potential drug targets of myeloid differentiation factor 88 inhibitor [TJ-M2010-5 (TJ5)] on this condition.
METHODS:
Small intestinal organoids from C57BL/6 mice aged 6-8 weeks were established and characterized using immunofluorescence for cell growth and proliferation marker nuclear antigen Ki-67, goblet cell marker mucin-2 (MUC-2), epithelial cell marker E-cadherin, and Paneth cell marker lysozyme (Lyz). Small intestinal organoids after 3 days of passaging were divided into different groups: a normal control group treated with culture medium containing 0.2% dimethyl sulfoxide (DMSO) for 10 hours, a lipopolysaccharide (LPS) group treated with culture medium containing 200 mg/L LPS and 0.2% DMSO for 10 hours, and a TJ5 group pre-treated with 10 mmol/L TJ5 for 2 hours followed by treatment with culture medium containing 200 mg/L LPS for 10 hours. Real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to measure the expression levels of interleukin-6 (IL-6) and zonula occludens-1 (ZO-1) in the small intestinal organoids. RNA transcriptome sequencing was performed on the small intestinal organoids from each group to analyze differentially expressed genes between groups, and significant enrichment was analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).
RESULTS:
By the 7th day of primary culture, mature organoids had formed, and their growth rate increased after passaging. Immunofluorescence identification showed expressions of Ki-67, MUC-2, E-cadherin, and Lyz, indicating that the mouse small intestinal organoids maintained their cellular composition and functional characteristics under in vitro culture conditions. RT-qPCR results showed that compared with the normal control group, the mRNA expression of IL-6 in the small intestinal organoids of the LPS group was significantly increased (2-ΔΔCT: 1.83±0.16 vs. 1.02±0.28, P < 0.05), while the mRNA expression of ZO-1 was significantly decreased (2-ΔΔCT: 0.53±0.11 vs. 1.01±0.18, P < 0.05). In contrast, the mRNA expression trends of both IL-6 and ZO-1 were reversed in the TJ5 group, showing statistically significant differences as compared with the LPS group (2-ΔΔCT: IL-6 mRNA was 1.24±0.01 vs. 1.83±0.16, ZO-1 mRNA was 1.97±0.29 vs. 0.53±0.11, both P < 0.05). RNA transcriptome sequencing showed 49 differentially expressed genes in the LPS group compared to the normal control group, with 42 upregulated and 7 downregulated. Compared to the LPS group, the TJ5 group showed 84 differentially expressed genes, with 47 upregulated and 37 downregulated. GO enrichment analysis of these differentially expressed genes showed that the significantly enriched biological processes of the differentially expressed genes between the normal control group and the LPS group included responses to LPS, responses to molecule of bacterial origin and responses to bacterium. The significantly enriched biological processes of the differentially expressed genes between the LPS group and the TJ5 group included glutathione metabolic processes, responses to stress cellular and responses to chemical stimulus. In molecular function groups, glutathione binding and oligopeptide binding were significantly enriched by the differentially expressed genes. In cellular component classifications, the enrichment of the differentially expressed genes was mainly observed in the cytoplasm, endoplasmic reticulum, and microsomes. KEGG pathway enrichment analysis indicated that the differentially expressed genes between the normal control group and LPS group were enriched in IL-17 signaling pathways, tumor necrosis factor (TNF) signaling pathways, viral protein interactions with cytokines and cytokine receptors signaling pathways, and cytokine-cytokine receptor interaction signaling pathways. In contrast, the differentially expressed genes between the LPS and TJ5 groups were mainly enriched in atherosclerosis signaling pathways, ferroptosis signaling pathways, glutathione metabolism signaling pathways, and cytochrome P450-mediated drug metabolism signaling pathways.
CONCLUSIONS
Mouse small intestinal organoids were successfully extracted and cultured. TJ5 may exert its protective effects by regulating gene expression and related signaling pathways (fluid shear stress and atherosclerosis, ferroptosis, glutathione metabolism, cytochrome P450 drug metabolism, etc.) in sepsis-injured mouse small intestinal organoids. These genes and signaling pathways may be key targets for treating sepsis-induced intestinal injury.
Animals
;
Mice
;
Sepsis/genetics*
;
Organoids/drug effects*
;
Mice, Inbred C57BL
;
Intestine, Small/metabolism*
;
Gene Expression Profiling
;
Transcriptome
;
Lipopolysaccharides
2.Optimization of the in vitro culture system for chicken small intestinal organoids.
Jing LI ; Liya WANG ; Dingyun MA ; Senyang LI ; Juanfeng LI ; Qingda MENG ; Junqiang LI ; Fuchun JIAN
Chinese Journal of Biotechnology 2024;40(12):4645-4659
In order to establish a stable in vitro culture platform for chicken small intestine three-dimensional (3D) organoids, in this study, crypt cells were collected from the small intestine of 18-day-old embryos of AA broilers. On the basis of the L-WRN conditioned medium, we optimized the culture conditions of chicken small intestinal organoids by adjusting the proportions of nicotinamide, N-acetylcysteine, LY2157299, CHIR99021, Jagged-1, FGF, and other cytokines to select the medium suitable for the long-term stable growth of the organoids. The optimization results showed that the addition of 1.5 µmol/L CHIR99021 significantly improved the organoid formation efficiency and organoid diameter. When 0.5 µmol/L Jagged-1 was added, a small amount of bud-like tissue appeared in organoids. After the addition of 50 ng/mL FGF-2, the rate of organoid germination was significantly increased. The 1.5 µmol/L CHIR99021, 0.5 µmol/L Jagged-1, and 50 ng/mL FGF-2 added in the medium can cooperate with each other to improve the formation and speed up the proliferation and differentiation of organoids, while improving the stemness maintenance of cells. The morphology, cell types, and culture characteristics of chicken small intestinal organoids were studied by HE staining, transmission electron microscopy, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), indirect immunofluorescence, and immunohistochemistry. The results showed that the 3D organoids of the chicken small intestine cultured in vitro were morphologically consistent with the chicken intestinal tissue and contained differentiated epithelial cells. In summary, we successfully established an in vitro culture system for chicken small intestinal organoids, providing a new method for the subsequent research on chicken intestinal physiology, pathology, and host-pathogen interaction mechanism and the development of relevant drugs.
Animals
;
Organoids/metabolism*
;
Intestine, Small/drug effects*
;
Chickens
;
Cell Culture Techniques/methods*
;
Culture Media
;
Chick Embryo
;
Tissue Culture Techniques/methods*
3.Biodegradation properties of multi-laminated small intestinal submucosa.
Wei Yi WU ; Bo Wen LI ; Yu Hua LIU ; Xin Zhi WANG
Journal of Peking University(Health Sciences) 2020;52(3):564-569
OBJECTIVE:
To study the biodegradation properties of multi-laminated small intestinal submucosa (mSIS) through in vitro and in vivo experiments, comparing with Bio-Gide, the most widely used collagen membrane in guided bone regeneration (GBR) technique, for the purpose of providing basis to investigate whether mSIS meets the requirements of GBR in dental clinics.
METHODS:
The degradation properties were evaluated in vitro and in vivo. In vitro degradation was performed using prepared collagenase solution. Morphology of mSIS and Bio-Gide in degradation solution were observed and the degradation rate was calculated at different time points. In in vivo experiments, nine New Zealand rabbits were used for subcutaneous implantation and were divided into three groups according to observation intervals. Six unconnected subcutaneous pouches were made on the back of each animal and were embedded with mSIS and Bio-Gide respectively. At the end of weeks 4, 8, and 12 after operation, gross observation and HE staining were used to evaluate the degree of degradation and histocompatibility.
RESULTS:
In vitro degradation experiments showed that mSIS membrane was completely degraded at the end of 12 days, while Bio-Gide was degraded at the end of 7 days. Besides, mSIS maintained its shape for longer time in the degradation solution than Bio-Gide, indicating that mSIS possessed longer degradation time, and had better ability to maintain space than Bio-Gide. In vivo biodegradation indicated that after 4 weeks of implantation, mSIS remained intact. Microscopic observation showed that collagen fibers were continuous with a few inflammatory cells that infiltrated around the membrane. Bio-Gide was basically intact and partially adhered with the surrounding tissues. HE staining showed that collagen fibers were partly fused with surrounding tissues with a small amount of inflammatory cells that infiltrated as well. Eight weeks after operation, mSIS was still intact, and was partly integrated with connective tissues, whereas Bio-Gide membrane was mostly broken and only a few residual fibers could be found under microscope. Only a small amount of mSIS debris could be observed 12 weeks after surgery, and Bio-Gide could hardly be found by naked eye and microscopic observation at the same time.
CONCLUSION
In vitro degradation time of mSIS is longer than that of Bio-Gide, and the space-maintenance ability of mSIS is better. The in vivo biodegradation time of subcutaneous implantation of mSIS is about 12 weeks and Bio-Gide is about 8 weeks, both of which possess good biocompatibility.
Animals
;
Biocompatible Materials/metabolism*
;
Bone Regeneration
;
Connective Tissue
;
Intestinal Mucosa
;
Intestine, Small
;
Membranes, Artificial
;
Rabbits
4.Egg phospholipids exert an inhibitory effect on intestinal cholesterol absorption in mice
Yoojin LEE ; Catherine Y HAN ; Minkyung BAE ; Young Ki PARK ; Ji Young LEE
Nutrition Research and Practice 2019;13(4):295-301
BACKGROUND/OBJECTIVES: Consumption of cholesterol-rich foods, such as eggs, has a minimal effect on circulating cholesterol levels in healthy humans. To gain insight, we investigated whether phospholipids rich in eggs (EPL) interfere with intestinal cholesterol absorption in vivo. MATERIALS/METHODS: To investigate the acute effect of EPL on intestinal cholesterol absorption, male C57BL/6J mice were orally administered with 6, 11, or 19 mg of EPL for three days. We also tested the effect of chronic EPL consumption on cholesterol metabolism in the small intestine and the liver in mice with diet-induced hypercholesterolemia. Male C57BL/6J mice were fed a high fat/high cholesterol (HF/HC; 35% fat, 0.25% cholesterol, w/w) diet for 4 weeks to induce hypercholesterolemia, and subsequently the mice were either fed 0, 0.4 or 0.8% (w/w) of EPL for 6 weeks. RESULTS: Intestinal cholesterol absorption was significantly decreased by the highest dose of acute EPL administration compared to control. Chronic EPL supplementation did not significantly alter intestinal cholesterol absorption nor plasma levels of total cholesterol and low-density lipoprotein cholesterol. In the small intestine and the liver, EPL supplementation minimally altered the expression of genes which regulate cellular cholesterol levels. CONCLUSION: Although chronic EPL consumption was not able to counteract hypercholesterolemia in HF/HC-fed mice, acute EPL administration decreased intestinal cholesterol absorption. This study provides in vivo evidence that acute administration of PLs in eggs prevent cholesterol absorption in the intestine, suggesting a mechanism for a minimal effect of egg consumption on circulating cholesterol levels.
Absorption
;
Animals
;
Cholesterol
;
Diet
;
Eggs
;
Humans
;
Hypercholesterolemia
;
Intestinal Absorption
;
Intestine, Small
;
Intestines
;
Lipoproteins
;
Liver
;
Male
;
Metabolism
;
Mice
;
Ovum
;
Phosphatidylcholines
;
Phospholipids
;
Plasma
5.Histological study on the safety of the controllable ileostomy with pipe.
Xiangyu WANG ; Chao XU ; Linhao CHEN ; Liangxiang HUANG ; Changqing ZENG ; Fangqin XUE ; Yu ZHENG ; Liangjie CHI ; Dajia LIN ; Lifeng XIE
Chinese Journal of Gastrointestinal Surgery 2018;21(11):1291-1295
OBJECTIVE:
To investigate the safety of the controllable ileostomy with pipe in view of histology.
METHODS:
Twenty-eight Beagle dogs undergoing controllable ileostomy with pipe were studied. The special fistula tube with balloon was placed into the hole locating at the cecal root opposing the mesenteric side, and fixed by double knot compression method.
RESULTS:
The fistula tube was removed 14 days after surgery, then the safety of the procedure was preliminarily evaluated by gastrointestinal radiography and anatomical observation. The small intestine tissue at the compression suture was used as the experimental segment, and the small intestine tissue at the proximal non-compression suture was used as the control segment. The histological staining and the immunohistochemical staining of S-100 protein, c-kit protein and α-smooth muscle actin(α-SMA) protein between two segment were compared, while quantitative comparison of myenteric plexus, intestinal Cajal cell(ICC) and smooth muscle cells in intestinal wall was carried out. After removal of fistula tube at 14 days postoperative, the dogs were normal in feeding and defecation. The digestive tract radiography showed that the intestine was patent without obvious stenosis and obstruction. The dogs were dissected 21 days after operation. The abdominal sinus ostium was well healed and the internal sinus was well formed. Under gross inspection, blood supply, morphology and motor function of experimental intestine segment were similar from the proximal and distal segments of control intestine. S-100 immunohistochemical staining showed that the morphology and distribution of S-100 protein positive cells and "blank area" cells in the experimental and control segments were consistent. Myenteric plexus counting showed that the experimental segment was 3.62±1.82/field and the control segment was 3.27±1.62/field, whose difference was not statistically significant(t=1.30, P=0.20). Immunohistochemical staining of c-kit showed that the distribution of c-kit positive cells in both segments was consistent. Counting of the number of ICCs in myenteric plexus revealed that experimental segment was 2.96±2.57/plexus, and control segment was 2.49±1.80/plexus without significant difference(t=1.81, P=0.07). Immunohistochemical staining of α-SMA showed that the morphology and distribution of smooth muscle cells in whole intestinal wall(muscle layer, longitudinal muscle, ring muscle) in experimental and control segments were consistent. The average absorbance(A) value of α-SMA staining in ring muscle layer was detected and quantified. The experimental segment was 0.15±0.03 and control segment was 0.14±0.04 without significant difference(t=1.16, P=0.25).
CONCLUSION
The technique of controllable ileostomy with pipe is safe in view of histology, which may replace the traditional protective ileostomy.
Animals
;
Dogs
;
Ileostomy
;
methods
;
standards
;
Intestine, Small
;
surgery
;
Models, Animal
;
Proto-Oncogene Proteins c-kit
;
metabolism
;
Treatment Outcome
6.Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics
Tingting ZHAO ; Xiaojuan SHEN ; Chang DAI ; Li CUI
Journal of Veterinary Science 2018;19(6):798-807
Several studies have reported the effect of absorption of procyanidins and their contribution to the small intestine. However, differences between dietary interventions of procyanidins and interventions via antibiotic feeding in pigs are rarely reported. Following 16S rRNA gene Illumina MiSeq sequencing, we observed that both procyanidin administration for 2 months (procyanidin-1 group) and continuous antibiotic feeding for 1 month followed by procyanidin for 1 month (procyanidin-2 group) increased the number of operational taxonomic units, as well as the Chao 1 and ACE indices, compared to those in pigs undergoing antibiotic administration for 2 months (antibiotic group). The genera Fibrobacter and Spirochaete were more abundant in the antibiotic group than in the procyanidin-1 and procyanidin-2 groups. Principal component analysis revealed clear separations among the three groups. Additionally, using the online Molecular Ecological Network Analyses pipeline, three co-occurrence networks were constructed; Lactobacillus was in a co-occurrence relationship with Trichococcus and Desulfovibrio and a co-exclusion relationship with Bacillus and Spharerochaeta. Furthermore, metabolic function analysis by phylogenetic investigation of communities by reconstruction of unobserved states demonstrated modulation of pathways involved in the metabolism of carbohydrates, amino acids, energy, and nucleotides. These data suggest that procyanidin influences the gut microbiota and the intestinal metabolic function to produce beneficial effects on metabolic homeostasis.
Absorption
;
Amino Acids
;
Anti-Bacterial Agents
;
Bacillus
;
Carbohydrates
;
Desulfovibrio
;
Fibrobacter
;
Gastrointestinal Microbiome
;
Genes, rRNA
;
Homeostasis
;
Intestine, Small
;
Lactobacillus
;
Metabolism
;
Nucleotides
;
Principal Component Analysis
;
Proanthocyanidins
;
Swine
;
Swine, Miniature
7.Enhancement of gut permeation of amoxicillin with Nigella sativa seed extract and its phytochemical screening.
Babar ALI ; Mohammad ALI ; Saima AMIN ; Showkat R MIR
Chinese Journal of Natural Medicines (English Ed.) 2018;16(2):125-130
The seeds of Nigella sativa Linn. (Ranunculaceae), commonly known as Black cumin, are predominantly used as carminative, antispasmodic, and stimulant. The main objective of the present study was to evaluate the effect of N. sativa seed extract on the permeation of co-infused amoxicillin across the gut wall. The methanolic extract of N. sativa improved intestinal permeability of amoxicillin in in-vitro experiments in a dose-dependent manner. Two new glycosides, decanyl nigelloic acid diglucoside [n-decanyl-3-aldehydic-4-methoxy-5-hydroxy benzoate-5-β-D-glucofuranosyl (2→1)-β-D-glucopyranosyl-(2→1)-β-D-glucopyranoside]] and nigelabdienoyl triglucoside [homo-labd-5, 9(11)-dien-16-onyl-β-D-glucopyranosyl (2→1)-β-D-glucopyranosyl (2→1)-β-D-glucopyranoside], along with seven known fatty acid glycerides/esters, were isolated from the gut permeation enhancing extract. The structures of these new glycosides were elucidated by detailed spectroscopic analyses.
Amoxicillin
;
pharmacokinetics
;
Animals
;
Anti-Bacterial Agents
;
pharmacokinetics
;
Intestine, Small
;
metabolism
;
Male
;
Molecular Structure
;
Nigella sativa
;
chemistry
;
Phytochemicals
;
chemistry
;
metabolism
;
Plant Extracts
;
chemistry
;
metabolism
;
Rats
;
Rats, Wistar
;
Seeds
;
chemistry
8.Regulatory Eosinophils in Inflammation and Metabolic Disorders.
Bo Gie YANG ; Ju Yong SEOH ; Myoung Ho JANG
Immune Network 2017;17(1):41-47
Eosinophils are potent effector cells implicated in allergic responses and helminth infections. Responding to stimuli, they release their granule-derived cytotoxic proteins and are involved in inflammatory processes. However, under homeostatic conditions, eosinophils are abundantly present in the intestine and are constantly in contact with the gut microbiota and maintain the balance of immune responses without inflammation. This situation indicates that intestinal eosinophils have an anti-inflammatory function unlike allergic eosinophils. In support of this notion, some papers have shown that eosinophils have different phenotypes depending on the site of residence and are a heterogeneous cell population. Recently, it was reported that eosinophils in the small intestine and adipose tissue, respectively, contribute to homeostasis of intestinal immune responses and metabolism. Accordingly, in this review, we summarize new functions of eosinophils demonstrated in recent studies and discuss their homeostatic functions.
Adipose Tissue
;
Eosinophils*
;
Gastrointestinal Microbiome
;
Helminths
;
Homeostasis
;
Immunoglobulin A
;
Inflammation*
;
Interleukin-4
;
Intestine, Small
;
Intestines
;
Metabolism
;
Phenotype
;
Th17 Cells
9.Pomegranate leaf attenuates lipid absorption in the small intestine in hyperlipidemic mice by inhibiting lipase activity.
Xuan YU ; Xin-Pei WANG ; Fan LEI ; Jing-Fei JIANG ; Jun LI ; Dong-Ming XING ; Li-Jun DU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(10):732-739
Pomegranate leaf (PGL) has a definite role in regulating lipid metabolism. However, pharmacokinetic results show the main active ingredient, ellagic acid, in PGL has lower oral bioavailability, suggesting that the lipid-lowering effect of PGL may act through inhibiting lipid absorption in the small intestine. Our results demonstrated that pomegranate leaf and its main active ingredients (i.e., ellagic acid, gallic acid, pyrogallic acid and tannic acid) were capable of inhibiting pancreatic lipase activity in vitro. In computational molecular docking, the four ingredients had good affinity for pancreatic lipase. Acute lipid overload experiments showed that a large dosage of PGL significantly reduced serum total cholesterol (TG) and triglycerides (TC) levels in addition to inhibiting intestinal lipase activity, which demonstrated that PGL could inhibit lipase activity and reduce the absorption of lipids. We also found that PGL could reverse the reduced tight-junction protein expression due to intestinal lipid overload, promote Occludin and Claudin4 expression in the small intestine, and enhance the intestinal mucosal barrier. In conclusion, we demonstrated that PGL can inhibit lipid absorption and reduce blood TG and TC by targeting pancreatic lipase, promoting tight-junction protein expression and thereby preventing intestinal mucosa damage from an overload of lipids in the intestine.
Animals
;
Enzyme Inhibitors
;
administration & dosage
;
chemistry
;
Humans
;
Hyperlipidemias
;
drug therapy
;
enzymology
;
metabolism
;
Intestinal Absorption
;
Intestine, Small
;
metabolism
;
Kinetics
;
Lipase
;
chemistry
;
metabolism
;
Lipid Metabolism
;
Lythraceae
;
chemistry
;
Male
;
Mice
;
Mice, Inbred ICR
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Plant Leaves
;
chemistry
;
Triglycerides
;
metabolism
10.Sodium tanshinone II A sulfonate ameliorates microcirculatory disturbance of small intestine by attenuating the production of reactie oxygen species in rats with sepsis.
Wei ZHU ; Qing LU ; Lei WAN ; Jun FENG ; Hua-Wen CHEN
Chinese journal of integrative medicine 2016;22(10):745-751
OBJECTIVETo examine whether sodium tanshinone II A sulfonate (STS), the main effective component of Salvia miltiorrhiza is effective in relieving the microcirculatory disturbance of small intestine by suppressing the production of reactive oxygen species (ROS) in rats with sepsis.
METHODSA rat model of sepsis was induced by cecal ligation and puncture (CLP). Rats (n =40) were randomly divided into 4 groups: sham-operated group (sham, n =10), sepsis group (CLP, n =10), STS treatment group (STS, n =10) and ROS scavenger dimethylthiourea (DMTU, n =10) group. Animals in the STS group were injected with STS (1 mg/kg) for 10 min through the right external jugular vein after the CLP operation, and animals in the CLP group were given the same volume of normal saline after the CLP operation. Animals in the DMTU group were intraperitoneally injected with 5 mL/kg of 20% DMTU 1 h before CLP. The histopathologic changes in the intestinal tissues and changes of mesenteric microcirculation were observed. The levels of ROS in intestinal tissues from each group were qualitatively evaluated using a fluorescent microscope. The expressions of apoptosis signal-regulating kinase (ASK1), phosphorylated ASK1 (phospho-ASK1), p38 mitogen-activated protein kinases (p38 MAPK), phosphorylated p38 MAPK (phospho-p38 MAPK) and tissue factor (TF) were determined by Western blotting.
RESULTSIt was shown that there were obvious microcirculatory disturbance (P <0.05) and tissue injuries in intestinal tissues after CLP operation. The levels of ROS production, phospho-ASK1, phospho-p38 MAPK and TF were increased. Both STS and DMTU suppressed ROS, phospho-ASK1, phospho-p38 MAPK and TF production, and ameliorated the microcirculatory disturbance and tissues injury (P <0.01).
CONCLUSIONSTS can ameliorate the microcirculatory disturbance of the small intestine by attenuating the production of ROS in rats with sepsis.
Animals ; Intestine, Small ; blood supply ; drug effects ; pathology ; MAP Kinase Kinase Kinase 5 ; metabolism ; Male ; Microcirculation ; drug effects ; Phenanthrenes ; chemistry ; pharmacology ; therapeutic use ; Phosphorylation ; drug effects ; Rats, Wistar ; Reactive Oxygen Species ; metabolism ; Sepsis ; drug therapy ; enzymology ; pathology ; physiopathology ; Thromboplastin ; metabolism ; p38 Mitogen-Activated Protein Kinases ; metabolism

Result Analysis
Print
Save
E-mail