1.Effect of Modified Yiyi Fuzi Baijiang Powder on intestinal mucosal permeability and expression of AQP3, AQP4 in ulcerative colitis rats.
Wen-Xiao LI ; Jiang CHEN ; Zhi-Cheng HE ; Lu-Rong ZHANG ; Guo-Qiang LIANG ; Xing-Xing JIANG ; Yong-Na WEI ; Qin ZHOU
China Journal of Chinese Materia Medica 2025;50(14):3962-3968
This study investigated the therapeutic effects and mechanisms of Modified Yiyi Fuzi Baijiang Powder on ulcerative colitis(UC) in rats from the perspective of dampness. SD rats were randomly allocated into six groups(n=10): control, model, mesalazine, and Modified Yiyi Fuzi Baijiang Powder at low(3.96 g·kg~(-1)·d~(-1)), medium(7.92 g·kg~(-1)·d~(-1)), and high(15.84 g·kg~(-1)·d~(-1)) doses. UC was induced in all groups except the control by administration with 3% dextran sulfate sodium(DSS) solution for 7 days. The disease activity index(DAI) was recorded, and the colon tissue was collected for analysis. Histopathological changes were assessed by hematoxylin-eosin staining. Serum levels of D-lactic acid(D-LA) and diamine oxidase(DAO) were measured by ELISA. Immunohistochemistry and PCR were employed to evaluate the expression of aquaporins(AQP3, AQP4) and tight junction proteins [zonula occludens-1(ZO-1) and occludin] at both protein and mRNA levels. Compared with the control group, the model group showed an increased DAI scores(P<0.05), intestinal mucosal damage, elevated serum levels of DAO and D-LA(P<0.05), and decreased expression of AQP3, AQP4, ZO-1, and occludin(P<0.05). Treatment with Modified Yiyi Fuzi Baijiang Powder reduced the DAI scores(P<0.05), lowered the serum levels of D-LA and DAO(P<0.05), and upregulated the expression of AQP3, AQP4, ZO-1, and occludin at both protein and mRNA levels compared with the model group. These findings suggest that Modified Yiyi Fuzi Baijiang Powder exerts therapeutic effects on UC by reducing the intestinal mucosal permeability, promoting colonic mucosal repair, and regulating abnormal intestinal water metabolism, which may involve the upregulation of AQP3 and AQP4 expression.
Animals
;
Colitis, Ulcerative/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Intestinal Mucosa/metabolism*
;
Male
;
Aquaporin 3/metabolism*
;
Aquaporin 4/metabolism*
;
Permeability/drug effects*
;
Humans
;
Powders
;
Intestinal Barrier Function
2.Hypaphorine alleviates Crohn's disease-like colitis in mice by inhibiting intestinal epithelial inflammatory response and protecting intestinal barrier function.
Qingqing HUANG ; Jingjing YANG ; Xuening JIANG ; Wenjing ZHANG ; Yu WANG ; Lugen ZUO ; Lian WANG ; Yueyue WANG ; Xiaofeng ZHANG ; Xue SONG ; Jianguo HU
Journal of Southern Medical University 2025;45(11):2456-2465
OBJECTIVES:
To investigate the effect of hypaphorine (HYP) on Crohn's disease (CD)‑like colitis in mice and its molecular mechanism.
METHODS:
Thirty male C57BL/6J mice were equally randomized into WT, TNBS, and HYP groups, and in the latter two groups, mouse models of CD-like colitis were established using TNBS with daily gavage of 15 mg/kg HYP or an equivalent volume of saline. The treatment efficacy was evaluated by assessing the disease activity index (DAI), body weight changes, colon length and histopathology. The effect of HYP was also tested in a LPS-stimulated Caco-2 cell model mimicking intestinal inflammation by evaluating inflammatory responses and barrier function of the cells using qRT-PCR and immunofluorescence staining. GO and KEGG analyses were conducted to explore the therapeutic mechanism of HYP, which was validated in both the cell and mouse models using Western blotting.
RESULTS:
In the mouse models of CD-like colitis, HYP intervention obviously alleviated colitis as shown by significantly reduced body weight loss, colon shortening, DAI and inflammation scores, and expressions of pro-inflammatory factors in the colon tissues. HYP treatment also significantly increased the TEER values, reduced bacterial translocation to the mesenteric lymph nodes, liver, and spleen, lowered serum levels of I-FABP and FITC-dextran, increased the number of colonic tissue cup cells, and upregulated colonic expressions of MUC2 and tight junction proteins (claudin-1 and ZO-1) in the mouse models. In LPS-stimulated Caco-2 cells, HYP treatment significantly inhibited the expressions of pro-inflammatory factors and increased the expressions of tight junction proteins. Western blotting showed that HYP downregulated the expressions of the key proteins in the TLR4/MyD88 signaling pathway in both the in vitro and in vivo models.
CONCLUSIONS
HYP alleviates CD-like colitis in mice possibly by suppressing intestinal epithelial inflammation and improving gut barrier function.
Animals
;
Male
;
Mice, Inbred C57BL
;
Crohn Disease/drug therapy*
;
Mice
;
Humans
;
Caco-2 Cells
;
Intestinal Mucosa/metabolism*
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Inflammation
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Intestinal Barrier Function
3.ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis.
Zhiqian BI ; Jia CHEN ; Xiaoyao CHANG ; Dangran LI ; Yingying YAO ; Fangfang CAI ; Huangru XU ; Jian CHENG ; Zichun HUA ; Hongqin ZHUANG
Frontiers of Medicine 2023;17(5):972-992
Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.
Humans
;
Mice
;
Animals
;
Gastrointestinal Microbiome
;
Intestinal Barrier Function
;
Mice, Inbred C57BL
;
Colitis/metabolism*
;
Inflammatory Bowel Diseases/drug therapy*
;
Inflammation
;
Anti-Inflammatory Agents/pharmacology*
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail