1.Preparation and intestinal absorption mechanism of herpetrione and Herpetospermum caudigerum polysaccharides based self-assembled nanoparticles.
Xiang DENG ; Yu-Wen ZHU ; Ji-Xing ZHENG ; Rui SONG ; Jian-Tao NING ; Ling-Yu HANG ; Zhi-Hui YANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2025;50(2):404-412
In this experiment, self-assembled nanoparticles(SANs) were prepared by the pH-driven method, and Her-HCP SAN was constructed by using herpetrione(Her) and Herpetospermum caudigerum polysaccharides(HCPs). The average particle size and polydispersity index(PDI) were used as evaluation indexes for process optimization, and the quality of the final formulation was evaluated in terms of particle size, PDI, Zeta potential, and microstructure. The proposed Her-HCP SAN showed a spheroid structure and uniform morphology, with an average particle size of(244.58±16.84) nm, a PDI of 0.147 1±0.014 8, and a Zeta potential of(-38.52±2.11) mV. Her-HCP SAN significantly increased the saturation solubility of Her by 2.69 times, with a cumulative release of 90.18% within eight hours. The results of in vivo unidirectional intestinal perfusion reveal that Her active pharmaceutical ingredient(API) is most effectively absorbed in the jejunum, where both K_a and P_(app) are significantly higher compared to the ileum(P<0.001). However, the addition of HCP leads to a significant reduction in the P_(app) of Her in the jejunum(P<0.05). Furthermore, the formation of the Her-HCP SAN results in a notably lower P_(app) in the jejunum compared to Her API alone(P<0.001), while both K_a and P_(app) in the ileum are significantly increased(P<0.001, P<0.05). The absorption of Her-HCP SAN at different concentrations in the ileum shows no significant differences, and the pH has no significant effect on the absorption of Her-HCP SAN in the ileum. The addition of the transporter protein inhibitors(indomethacin and rifampicin) significantly increases the absorption parameters K_a and P_(app) of Her-HCP SAN in the ileum(P<0.05,P<0.01), whereas the addition of verapamil has no significant effect on the intestinal absorption parameters of Her-HCP SAN, suggesting that Her may be a substrate for multidrug resistance-associated protein 2 and breast cancer resistance proteins but not a substrate of P-glycoprotein.
Nanoparticles/metabolism*
;
Polysaccharides/pharmacokinetics*
;
Intestinal Absorption/drug effects*
;
Animals
;
Rats
;
Particle Size
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Male
;
Rats, Sprague-Dawley
;
Drug Carriers/chemistry*
;
Drug Compounding
;
Cucurbitaceae/chemistry*
2.Interactions between Xuefu Zhuyu Decoction and atorvastatin based on human intestinal cell models and in vivo pharmacokinetics in rats.
Xiang LI ; Huan YI ; Chang-Ying REN ; Hao-Hao GUO ; Hong-Tian YANG ; Ying ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3159-3167
The study aims to explore the herb-drug interaction between Xuefu Zhuyu Decoction(XFZY) and atorvastatin(AT). Reverse transcription polymerase chain reaction(RT-PCR) was used to analyze the transcription levels of proteins related to drug metabolism and transport in LS174T cells, detect the intracellular drug uptake under various substrate concentrations and incubation time, and optimize the model reaction conditions of transporter multidrug resistance protein 1(MDR1)-specific probe Rhodamine 123 and AT to establish a cell model for investigating the human intestinal drug interaction. The cell counting kit-8(CCK-8) method was adopted to evaluate the cytotoxicity of XFZY on LS174T cells. After a single and continuous 48 h culture with XFZY, AT or Rhodamine 123 was added for co-incubation. The effect and mechanism of XFZY on human intestinal absorption of AT were analyzed by measuring the intracellular drug concentrations and transcription levels of related transporters and metabolic enzymes. The results of in vitro experiments show that a single co-culture with a high concentration of XFZY significantly increases the intracellular concentrations of Rhodamine 123 and AT. A high concentration of XFZY co-culture for 48 h increases the AT uptake level, significantly induces the CYP3A4 and UGT1A1 gene expression levels, and inhibits the OATP2B1 gene expression level. To compare with the evaluation results of the in vitro human cell model, the pharmacokinetic experiment of XFZY combined with AT was carried out in rats. Sprague-Dawley(SD) rats were randomly divided into a blank control group and an XFZY group. After 14 days of continuous intragastric administration, AT was given in combination. The liquid chromatography-mass spectrometry(LC-MS)/MS method was used to detect the concentrations of AT and metabolites 2-hydroxyatorvastatin acid(2-HAT), 4-hydroxyatorvastatin acid(4-HAT), atorvastatin lactone(ATL), 2-hydroxyatorvastatin lactone(2-HATL), and 4-hydroxyatorvastatin lactone(4-HATL) in plasma samples, and the pharmacokinetic parameters were calculated. Pharmacokinetic analysis in rats shows that continuous administration of XFZY does not significantly change the pharmacokinetic characteristics of AT in rats, but the AUC_(0-6 h) values of AT and metabolites 2-HAT, 4-HAT, and 2-HATL increase by 21.37%, 14.94%, 12.42%, and 6.68%, respectively. The metabolic rate of the main metabolites shows a downward trend. The study indicates that administration combined with XFZY can significantly increase the uptake level of AT in human intestinal cells and increase the exposure level of AT and main metabolites in rats to varying degrees. The mechanism may be mainly due to the inhibition of intestinal MDR1 transport activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atorvastatin/administration & dosage*
;
Humans
;
Rats
;
Rats, Sprague-Dawley
;
Male
;
Intestines/cytology*
;
Intestinal Mucosa/metabolism*
;
Herb-Drug Interactions
;
Cytochrome P-450 CYP3A/metabolism*
;
Intestinal Absorption/drug effects*
3.Differences in intestinal absorption characteristics of Rubus multibracteatus extract in normal and inflammatory pain model rats by in-vitro everted intestine sac method.
Ming-Li BAO ; Qing ZHANG ; Yang JIN ; Yi CHEN ; Jian-Qing PENG ; Si-Ying CHEN ; Zhi-Jie MA ; Jian LIAO ; Jing HUANG ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2025;50(16):4690-4704
This study compared the differences in intestinal absorption characteristics of eleven active components in Rubus multibracteatus(RM) extract(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, epicatechin, catechin, xanthotoxin, p-coumaric acid, caffeic acid, and apigenin-7-O-glucuronide) between normal rats and inflammatory pain model rats using the in-vitro everted intestinal sac model. The RM extract was administered at absorption concentrations of 25.0, 50.0, and 100.0 mg·mL~(-1). The contents of the eleven components in intestinal absorption solution samples were quantified by ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), and their cumulative absorption(Q) and absorption rate constant(K_a) were calculated to evaluate the absorption characteristics of these components in normal rats and inflammatory pain model rats. The results show that except for catechin, epicatechin, and caffeic acid, the cumulative absorption-time curves of the other eight components(protocatechuic acid, tiliroside, scutellarin, luteoloside, astragalin, xanthotoxin, p-coumaric acid, and apigenin-7-O-glucuronide) exhibit an upward trend without saturation, with correlation coefficients(R~2) all > 0.9, indicating linear absorption. However, the overall absorption of all components is not dose-dependent with increasing concentration, suggesting that their absorption mechanisms are not solely passive diffusion. In both normal and model rats, the jejunum shows the highest absorption for all components except xanthotoxin. The overall absorption of seven components(excluding protocatechuic acid, caffeic acid, apigenin-7-O-glucuronide, and luteoloside) in normal rats is better than that in model rats across all intestinal segments. These findings indicate that the pathological state of inflammatory pain alters the intestinal absorption of RM extract, and its mechanism needs further investigation.
Animals
;
Rats
;
Intestinal Absorption/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/metabolism*
;
Disease Models, Animal
;
Pain/metabolism*
;
Intestines/drug effects*
;
Intestinal Mucosa/metabolism*
4.Differences in intestinal absorption characteristics of Laportea bulbifera extract in normal and rheumatoid arthritis model rats by isolated everted intestine model.
Ying LI ; Si-Ying CHEN ; Zi-Peng GONG ; Ning-Fang KANG ; Dan WU ; Juan TANG ; Yue-Ting LI ; Jie PAN ; Yong HUANG ; Lin ZHENG ; Yan-Yu LAN ; Yong-Jun LI ; Yong-Lin WANG
China Journal of Chinese Materia Medica 2020;45(2):405-411
This work aimed to investigate the intestinal absorption characteristics of Laportea bulbifera extract in normal and rheumatoid arthritis model rats. The contents of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, kaempferol-3-O-rutinoside, galuteolin, quercetin and isoquercetin in intestinal absorption solution samples were detected by UPLC-MS/MS with 5.0 g·L~(-1) as the absorption concentration. The cumulative absorption(Q) and absorption rate constant(K_a) were calculated, and the absorption characteristics of different components of L. bulbifera in intestinal absorption solution of normal rats and rheumatoid arthritis rats were compared. The results showed that all the eight index components in the extract of L. bulbifera could be absorbed into the intestinal capsule, the cumulative absorption-time curve of each component showed an upward trend without saturation, and the correlation regression coefficient(R~2) was greater than 0.92, which is consistent with the zero-order absorption rate process. It was speculated that the possible absorption mode of each component was passive diffusion. In normal condition, the absorption of ileum was the best(except chlorogenic acid), and in pathological condition, duodenum was the best. The total absorption of 8 components in each intestinal segment of RA rats was better than that of normal rats, which speculated that rheumatoid arthritis may change the specific site of drug absorption. The experimental results showed that rheumatoid arthritis could change the intestinal absorption of the extract of L. bulbifera, and its mechanism needs further study.
Animals
;
Arthritis, Rheumatoid/drug therapy*
;
Chromatography, High Pressure Liquid
;
Intestinal Absorption
;
Intestines/drug effects*
;
Plant Extracts/therapeutic use*
;
Rats
;
Tandem Mass Spectrometry
;
Urticaceae/chemistry*
5.Applicability analysis and evaluation of aglycones in single-pass intestinal perfusion technique based on PBPK model.
Yang LIU ; Xin ZHANG ; Xiu-Jia SHI ; Ya-Xin WEN ; Li YANG ; Ling DONG
China Journal of Chinese Materia Medica 2019;44(17):3645-3652
Single-pass intestinal perfusion( SPIP) is the common carrier of biopharmaceutics classification system( BCS) to study compound permeability. With the application and deepening study of BCS in the field of traditional Chinese medicine( TCM),SPIP model is becoming more and more common to study the intestinal absorption of TCM ingredients. Based on the limitations of the SPIP model in some researches on TCM permeability,it was speculated in this study that aglycone may be more suitable than the glycoside to study the intestinal absorption problem by using SPIP model. Furthermore,applicability of aglycone components was analyzed and evaluated. In this study,with quercetin,daidzein,formononetin,genistein and glycyrrhetinic acid used as research objects,the quantitative study of SPIP was used to evaluate the intestinal permeability of these aglycones and to predict the effective permeability coefficient( Peff) and absorption fraction( Fa) in human body. By combining studies comparison and analysis on multiple permeability research methods and prediction of human body absorption of aglycones in physiological-based pharmacokinetic models,this paper can further illustrate that the SPIP model is a good tool for studying the permeability of aglycones and predicting human absorption,which can provide data foundation and theoretical reference for researches on SPIP technique and BCS in intestinal absorption of TCM ingredients.
Biopharmaceutics
;
Humans
;
Intestinal Absorption
;
Intestines
;
drug effects
;
Medicine, Chinese Traditional
;
Perfusion
;
Permeability
6.Absorption of Inula cappa extract based on everted intestinal sac method.
Zi-Peng GONG ; Mei LI ; Jing-Yu HOU ; Lin-Lin WU ; Ting-Ting CHEN ; Yue-Ting LI ; Si-Ying CHEN ; Yong-Jun LI ; Ai-Min WANG ; Yan-Yu LAN ; Yong-Lin WANG
China Journal of Chinese Materia Medica 2018;43(3):609-617
To investigate the absorptive characteristics of Inula cappa extract based on the rat everted intestinal sac method . Nine representative ingredients in I. cappa extract were selected as the study objects. An UPLC-MS/MS method was established to determine and detect their cumulative absorption amount for expounding the absorptive characteristics of ingredients in different intestinal sections. According to the results, the transport mechanism of 8 compounds showed passive diffusion by the reverted gut sac method. And scopolin was actively transported in the intestine. The best absorption site of chlorogenic acid was duodenum. The best absorption site of cryptochlorogenic acid, 1,3--dicaffeoylquinic acid, luteolin-7-glucoside and 3,4--dicaffeoylquinic acid were jejunum. The best absorption site of neochlorogenic acid, scopolin, 4,5--dicaffeoylquinic acid and 3,5--dicaffeoylquinic acid was ileum. The absorption of all the compounds was affected by pH and bile. All of the nine ingredients in I. cappa extract could be absorbed in intestines, but with differences in the absorption rate, the best absorptive site and mechanism, indicating that the intestinal absorption of I. cappa extract was selective.
Animals
;
Chromatography, High Pressure Liquid
;
Intestinal Absorption
;
Intestines
;
drug effects
;
Inula
;
chemistry
;
Plant Extracts
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
7.Study on effect of oligochitosan in promoting intestinal absorption of protoberberine alkaloids in extracts from Corydalis saxicola total alkaloids.
Xin-yang LI ; Hui XIE ; Tu-lin LU ; Yue-jiao SHI ; Xing-de ZHANG ; Ting LIU
China Journal of Chinese Materia Medica 2015;40(9):1812-1816
OBJECTIVETo investigate the effect of oligochitosan in promoting intestinal absorption of protoberberine alkaloids in extracts from Corydalis saxicola total alkaloids.
METHODThe in vitro single-pass intestinal perfusion model in rats was established to study the changes in absorption kinetic parameters of dehydrocavidine, berberine hydrochloride and palmatine chloride in C. saxicola total alkaloids after the addition of different concentrations oligochitosan and evaluate the effect of oligochitosan in promoting intestinal absorption of the drugs.
RESULTThe concentration of oligochitosan had different effects on the absorption rate constant (Ka) and apparent permeability coefficient (Peff) of the three active component in rat intestines. Ka and Peff in 0.5% oligochitosan group significantly increased, indicating a stronger effect in promoting the absorption.
CONCLUSIONOligochitosan has a certain effect in promoting the intestinal absorptions of protoberberine alkaloids in C. saxicola total alkaloids.
Animals ; Berberine Alkaloids ; administration & dosage ; pharmacokinetics ; Chitin ; administration & dosage ; analogs & derivatives ; Corydalis ; chemistry ; Drugs, Chinese Herbal ; administration & dosage ; pharmacokinetics ; Intestinal Absorption ; drug effects ; Intestines ; drug effects ; metabolism ; Male ; Rats ; Rats, Sprague-Dawley
8.Study on intestinal absorption of ingredients from different compatibilities of Shaoyao Gancao decoction.
Ting-ting MA ; Rui HE ; Mu-xin GONG ; Yong-song XU ; Jing LI ; Yong-song ZHAI ; Guang WAN
China Journal of Chinese Materia Medica 2015;40(21):4268-4274
To study the compatible mechanisms and compatible proportion of Shaoyao Gancao decoction, the intestinal absorption of main ingredients in Shaoyao Gancao decoction SG11 (Baishao-Zhigancao 1: 1) , SG31 (Baishao-Zhigancao 3: 1), Baishao water decoction S and Zhigancao (G) were investigated and compared using in vitro everted intestinal sac model and in situ single pass intestinal perfusion (SPIP) model. The concentration of paeoniflorin (PF), liquiritin (LQ) and mono-ammonium glycyrrhizinate (GL) in test samples and samples of intestinal sac and intestinal perfusion was determined by HPLC. The intestinal absorptive amount and absorption parameters were calculated. Results showed that in the everted intestinal sac model, three ingredients could be absorbed by duodenum, jejunum and ileum, and the absorption in the jejunum was best for all 3 ingredients. The absorption rate of three ingredients in SG11 was significantly higher than that in single decoction (P < 0.05), but had no significant difference compared with SG31. In SPIP model, the absorption rate constant K(a), the apparent absorption coefficient P(app) and the absorption rate of three ingredients in SG11 were significantly higher than those in single decoction. Parameters of PF and GL in SG11 were significantly higher than those in SG31, but had no differences of LQ. It proved that the compatibility of Baishao and Zhigancao could improve the intestinal absorption of PF, LQ and GL. The absorption of each ingredient in SG11 was better than that in SG31.
Animals
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
pharmacokinetics
;
Intestinal Absorption
;
drug effects
;
Intestines
;
blood supply
;
metabolism
;
Male
;
Rats
;
Rats, Sprague-Dawley
9.Stabilized thiomer PAA-Cys-6MNA.
Jian-Sheng YANG ; Xian-Hui CHEN ; Hua ZHANG ; Wen-Bing DAI ; Xue-Qing WANG ; Qiang ZHANG
Acta Pharmaceutica Sinica 2014;49(6):942-948
The aimed of this study was to prepare stabilized thiomers to overcome the poor stability character of traditional thiomers. Poly(acrylic acid)-cysteine (PAA-Cys) was synthesized by conjugating cysteine with poly(acrylic acid) and poly(acrylic acid)-cysteine-6-mercaptonicotinic acid (PAA-Cys-6MNA, stabilized thiomers) was synthesized by grafting a protecting group 6-mercaptonicotinic acid (6MNA) with PAA-Cys. The free thiol of PAA-Cys was determined by Ellmann's reagent method and the ratio of 6MNA coupled was determined by glutathione reduction method. The study of permeation enhancement and stabilized function was conducted by using Franz diffusion cell method, with fluorescein isothiocyanate dextran (FD4) used as model drug. The influence of polymers on tight junctions of Caco-2 cell monolayer was detected with laser scanning confocal fluorescence microscope. The results indicated that both PAA-Cys and PAA-Cys-6MNA could promote the permeation of FD4 across excised rat intestine, and the permeation function of PAA-Cys-6MNA was not influence by the pH of the storage environment and the oxidation of air after the protecting group 6MNA was grafted. The distribution of tight junction protein of Caco-2 cell monolayer F-actin was influenced after incubation with PAA-Cys and PAA-Cys-6MNA. In conclusion, stabilized thiomers (PAA-Cys-6MNA) maintained the permeation function compared with the traditional thiomers (PAA-Cys) and its stability was improved. The mechanism of the permeation enhancement function of the polymers might be related to their influence on tight junction relating proteins of cells.
Acrylic Resins
;
chemistry
;
Actins
;
metabolism
;
Animals
;
Caco-2 Cells
;
Cysteine
;
chemistry
;
Dextrans
;
Fluorescein-5-isothiocyanate
;
analogs & derivatives
;
Glutathione
;
Humans
;
Intestinal Absorption
;
Intestinal Mucosa
;
drug effects
;
Nicotinic Acids
;
chemistry
;
Rats
;
Sulfhydryl Compounds
;
chemistry
10.Intestinal absorption of berberine and 8-hydroxy dihydroberberine and their effects on sugar absorption in rat small intestine.
Shi-chao WEI ; Su DONG ; Li-jun XU ; Chen-yu ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(2):186-189
The intestinal absorption of berberine (Ber) and its structural modified compound 8-hydroxy dihydroberberine (Hdber) was compared, and their effects on the intestinal absorption of sugar by perfusion experiment were investigated in order to reveal the mechanism of low dose and high activity of Hdber in the treatment of hyperglycemia. The absorption of Hdber and Ber in rat small intestine was measured by in situ perfusion. High performance liquid chromatography (HPLC) was used to determine the concentrations of Hdber and Ber. In situ perfusion method was also used to study the effects of Hdber and Ber on sugar intestinal absorption. Glucose oxidase method and UV spectrophotometry were applied to examine the concentrations of glucose and sucrose in the perfusion fluid. The results showed that the absorption rate of Ber in the small intestine was lower than 10%, but that of Hdber was larger than 70%. Both Hdber and Ber inhibited the absorption of glucose and sucrose at the doses of 10 and 20 μg/mL. However, Hdber presented stronger activity than Ber (P<0.01). It is suggested that Hdber is absorbed easily in rat small intestine and that its inhibitory effect on the absorption of sugar is better than Ber.
Absorption
;
Animals
;
Berberine
;
administration & dosage
;
analogs & derivatives
;
Carbohydrate Metabolism
;
drug effects
;
Carbohydrates
;
chemistry
;
Chromatography, High Pressure Liquid
;
Glucose
;
metabolism
;
Intestinal Absorption
;
drug effects
;
Rats

Result Analysis
Print
Save
E-mail