1.Mechanism of extracellular vesicles in the repair of intervertebral disc degeneration.
Journal of Biomedical Engineering 2025;42(2):409-416
Extracellular vesicles (EVs), defined as cell-secreted nanoscale vesicles that carry bioactive molecules, have emerged as a promising therapeutic strategy in tumor and tissue regeneration. Their potential in repairing intervertebral disc degeneration (IDD) through multidimensional regulatory mechanisms is a rapidly advancing field of research. This paper provided an overview of the mechanisms of EVs in IDD repair, thoroughly reviewed recent literature on EVs for IDD, domestically and internationally, and summarized their therapeutic mechanisms. In IDD repair, EVs could act through different mechanisms at the molecular, cellular, and tissue levels. At the molecular level, EVs could treat IDD by inhibiting inflammatory reactions, suppressing oxidative stress, and regulating the synthesis and decomposition of extracellular matrix. At the cellular level, EVs could treat IDD by inhibiting cellular pyroptosis, ferroptosis, and apoptosis and promoting cell proliferation and differentiation. At the tissue level, EVs could treat IDD by inhibiting neovascularization. EVs have a strong potential for clinical application in the treatment of IDD and deserve more profound study.
Extracellular Vesicles/physiology*
;
Humans
;
Intervertebral Disc Degeneration/therapy*
;
Apoptosis
;
Cell Proliferation
;
Oxidative Stress
;
Cell Differentiation
;
Extracellular Matrix/metabolism*
;
Animals
;
Pyroptosis
2.Study on the mechanism of apoptosis mediated by acid sensitive ion channel 1 through extracellular signal regulation of kinase 5 signaling pathway and mitochondrial disorder pathway.
Xian-Fang LUO ; Zheng-Yue JIN ; Chi ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(3):298-305
OBJECTIVE:
To explore mechanisms of acid-sensing ion channel 1 (ASIC1) mediated lumbar nucleus pulposus cell apoptosis through extracellular-signalregulated protein kinase 5 (ERK5) signaling pathway and mitochondrial dysfunction pathway.
METHODS:
Totally 34 patients with degenerative lumbar disc herniation (LDH) admitted from January 2020 to December 2022 were collected as research objects, including 21 males and 13 females;aged from 29 to 52 years old with an average of (37.43±4.75) years old;22 patients with grade Ⅱ and 12 patients with grade Ⅳ, according to Pfirrmann grading criteria;15 patients with L4,5 and 19 patients with L5S1. The expression of ASIC1 in nucleus pulposus of LDH patients was measured by immunohistochemical staining. Nucleus pulposus cells were cultured by primary culture method, identified by toluidine blue staining and immunohistochemical staining, and the expression of ASIC1 protein was located by immunofluorescence staining. According to the addition of siRNA-ASIC1, ASIC1 overexpression plasmid, and ERK5 inhibitors, the nucleus pulpocyte was divided into three groups, named as SIRNA-silenced group, overexpression group, and inhibitor group, with 3 patients in each group. Cells of each group were collected at 72 h after intervention, expression of ASIC1, ERK5, BCL-xL/BCL-2-associated Death promoter (Bad), B-cell lymphoma-2 associated X (Bax) and B-cell lymphoblast-2 gene (Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR);intracellular calcium ion levels were detected by calcium ion kit, mitochondrial membrane potential was detected by JC-1 kit, and apoptosis was observed by AV-PI kit.
RESULTS:
In LDH patients with grade Ⅳ, nucleus pulposus tissue removed during operation revealed poor elasticity, white color and poor ductility, and immunohistochemical results showed increased ASIC1 expression. There was no significant difference in mRNA relative expression of ASIC1 between siRNA silencing group (0.31±0.03) and inhibitor group (0.39±0.05) (P>0.05). The mRNA relative expression level of ERK5 in siRNA silencing group(0.32±0.05) was significantly higher than that in inhibitor group (0.15±0.04)(P<0.05), which suggested ERK5 was the downstream molecule of ASIC1. The mRNA relative expression levels of apoptosis promoting factor Bad and Bax in siRNA silencing group and inhibitor group were lower than those in overexpression group(P<0.05), the relative expression level of anti-apoptosis factor Bcl-2 mRNA was significantly increased (P<0.05). The calcium content in overexpression group was higher than that in siRNA silencing and inhibitor groups (P<0.05), the normal proportion of mitochondrial membrane potential in overexpression group was lower than that in siRNA silencing and inhibitor group (P<0.05), and the apoptosis rate in overexpression group was higher than that in siRNA silencing and inhibitor group (P<0.05).
CONCLUSION
After the activation of ASIC1 channel protein, calcium ions could enter the cells and act as a second messenger molecule to regulate apoptosis of nucleus pulposus cells by ERK5 signaling pathway and mitochondrial disorder pathway.
Humans
;
Acid Sensing Ion Channels/physiology*
;
Male
;
Female
;
Apoptosis
;
Middle Aged
;
Adult
;
Signal Transduction
;
Mitogen-Activated Protein Kinase 7/physiology*
;
Mitochondrial Diseases/genetics*
;
Nucleus Pulposus/metabolism*
;
Intervertebral Disc Degeneration/metabolism*
;
Mitochondria/metabolism*
;
Intervertebral Disc Displacement/genetics*
3.Single-nucleus transcriptomics decodes the link between aging and lumbar disc herniation.
Min WANG ; Zan HE ; Anqi WANG ; Shuhui SUN ; Jiaming LI ; Feifei LIU ; Chunde LI ; Chengxian YANG ; Jinghui LEI ; Yan YU ; Shuai MA ; Si WANG ; Weiqi ZHANG ; Zhengrong YU ; Guang-Hui LIU ; Jing QU
Protein & Cell 2025;16(8):667-684
Lumbar disc (LD) herniation and aging are prevalent conditions that can result in substantial morbidity. This study aimed to clarify the mechanisms connecting the LD aging and herniation, particularly focusing on cellular senescence and molecular alterations in the nucleus pulposus (NP). We performed a detailed analysis of NP samples from a diverse cohort, including individuals of varying ages and those with diagnosed LD herniation. Our methodology combined histological assessments with single-nucleus RNA sequencing to identify phenotypic and molecular changes related to NP aging and herniation. We discovered that cellular senescence and a decrease in nucleus pulposus progenitor cells (NPPCs) are central to both processes. Additionally, we found an age-related increase in NFAT1 expression that promotes NPPC senescence and contributes to both aging and herniation of LD. This research offers fresh insights into LD aging and its associated pathologies, potentially guiding the development of new therapeutic strategies to target the root causes of LD herniation and aging.
Intervertebral Disc Displacement/metabolism*
;
Humans
;
Aging/pathology*
;
Nucleus Pulposus/pathology*
;
Male
;
Female
;
Transcriptome
;
Middle Aged
;
Lumbar Vertebrae/pathology*
;
Adult
;
Cellular Senescence
;
Stem Cells/pathology*
;
Aged
;
Intervertebral Disc Degeneration/metabolism*
4.Bushen Huoxue Decoction regulates ADSCs-Exos to affect nucleus pulposus cell apoptosis and ERK signaling pathway in intervertebral disc degeneration.
Zhao-Yong LI ; Ling-Hui LI ; Lei YANG ; Shao-Feng YANG ; Yan-Tao GUO ; Long CHEN ; Jia-Hao DUAN ; Qiu-En XIE ; En-Xu LIU ; Yu SUN ; Fei SUN
China Journal of Chinese Materia Medica 2024;49(21):5704-5712
This study aims to investigate the effects of Bushen Huoxue Decoction regulating adipose-derived stem cells(ADSCs)-exosomes(Exos) on the apoptosis of intervertebral disc nucleus pulposus cells(NPCs) and extracellular signal-regulated kinase(ERK) signaling pathway. Tert-butyl hydrogen peroxide(TBHP)-induced NPCs were divided into control, model, drug-containing serum, blank Exos, normal serum Exos, and drug-containing serum Exos groups. Cell viability and proliferation were examined by the CCK-8 assay and EdU staining, respectively. The cell cycle and apoptosis were evaluated by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of interleukin(IL)-1β, tumor necrosis factor(TNF)-α, and IL-6. The mRNA levels of aggrecan, collagen type Ⅱ alpha 1 chain(COL2A1), and ERK were determined by qRT-PCR, and the protein levels of aggrecan, COL2A1, and p-ERK were determined by Western blot. The results showed that compared with the model group, the treatments with drug-containing serum, blank Exos, and normal serum Exos enhanced the viability and proliferation of NPCs, decreased the proportion of cells in the G_0/G_1 phase, increased the proportion of cells in the S phase, reduced apoptosis, lowered the levels of IL-1β, TNF-α, and IL-6, up-regulated the mRNA and protein levels of aggrecan and COL2A1, and down-regulated the mRNA level of ERK and the protein level of p-ERK. Compared with the drug-containing serum, blank Exos, and normal serum Exos groups, the treatment with drug-containing serum Exos enhanced the viability and proliferation of NPCs, decreased the proportion of cells in the G_0/G_1 phase, increased the cells in the S phase, reduced apoptosis, lowered the levels of IL-1β, TNF-α, and IL-6, up-regulated the mRNA and protein levels of aggrecan and COL2A1, and down-regulated the mRNA level of ERK and the protein level of p-ERK. The results confirmed that the Exos secreted by ADSCs after treatment with Bushen Huoxue Decoction-containing serum promoted the proliferation of degenerated NPCs, inhibited apoptosis and the expression of inflammatory mediators, and promoted the production of proteoglycans and collagen, thus delaying the progression of intervertebral disc degeneration, the mechanism of which was related to the regulation of the ERK signaling pathway.
Intervertebral Disc Degeneration/drug therapy*
;
Apoptosis/drug effects*
;
Nucleus Pulposus/cytology*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Rats
;
MAP Kinase Signaling System/drug effects*
;
Rats, Sprague-Dawley
;
Collagen Type II/metabolism*
;
Humans
;
Cell Proliferation/drug effects*
;
Stem Cells/metabolism*
;
Aggrecans/metabolism*
;
Cell Survival/drug effects*
;
Male
;
Cells, Cultured
;
Tumor Necrosis Factor-alpha/metabolism*
5.Research progress in mechanism of Chinese herbal compounds and monomers in delaying lumbar intervertebral disc degeneration.
Kai SUN ; Li-Guo ZHU ; Xu WEI ; He YIN ; Jia-Wen ZHAN ; Xun-Lu YIN ; Tao HAN
China Journal of Chinese Materia Medica 2022;47(9):2400-2408
Traditional Chinese medicine has unique advantages in the treatment of degenerative bone and joint diseases, and its widely used in clinical practice. In recent years, many scholars have conducted a large number of basic studies on the delay of intervertebral disc degeneration by herbal compound and monomeric components from different perspectives. In order to further elucidate its mechanism of action, this paper summarizes the in vivo and in vitro experimental studies conducted at the level of both herbal compound and single components, respectively, in order to provide references for the basic research on the treatment of lumbar intervertebral disc degeneration by Chinese medicine. A summary shows that commonly used herbal compound prescriptions include both classical prescriptions such as Duhuo Jisheng Decoction, as well as clinical experience prescriptions such as Yiqi Huoxue Recipe. Angelicae Sinensis Radix, Chuanxiong Rhizoma, Rehmanniae Radix Praeparata, Achyranthis Bidentatae Radix, and Eucommiae Cortex were used most frequently. Tonic for deficiency and blood stasis activators were used most frequently. The most utilized monomeric components include icariin, ginsenoside Re, salvianolic acid B and aucubin. The main molecular mechanisms by which herbal compound and monomeric components delay of lumbar intervertebral disc degeneration include improving the intervertebral disc microenvironment, promoting the synthesis of aggregated proteoglycans and type Ⅱ collagen in the intervertebral disc, reducing the degradation of the extracellular matrix, and inhibiting apoptosis in the nucleus pulposus cells, etc. The main signaling pathways involved include Wnt/β-catenin signaling pathway, MAPK-related signaling pathway, mTOR signaling pathway, Fas/FasL signaling pathway, PI3 K/Akt signaling pathway, NF-κB signaling pathway, JAK/STAT signaling pathway, and hedgehog signaling pathway, etc.
China
;
Drugs, Chinese Herbal/therapeutic use*
;
Hedgehog Proteins/metabolism*
;
Humans
;
Intervertebral Disc Degeneration/metabolism*
;
Nucleus Pulposus/metabolism*
;
Wnt Signaling Pathway
6.Expression and clinical significance of receptor-interacting protein serine-threonine kinases 1 in the nucleus pulposus of patients with lumbar disc herniation.
Mao-Cong WU ; Ling-Ling WANG ; Xin-Chang DENG
China Journal of Orthopaedics and Traumatology 2021;34(4):363-367
OBJECTIVE:
To investigate the expression and clinical significance of receptor interacting protein serine-threonine kinases 1 (RIPK1) in the nucleus pulposus of patients with lumbar disc herniation (LDH).
METHODS:
Nucleus pulposus tissue specimens of 40 patients with LDH patients underwent surgical treatment from January 2016 to January 2018 as the case group, and nucleus pulposus tissue specimens of 30 patients with lumbar spine fracture underwent surgical treatment at the same time as the control group. The expression of RIPK1 mRNA and protein of receptor interaction were detected by polymerase chain reaction (PCR) and Western blot, respectively. The expression of RIPK1 protein in the nucleus pulposus were detected by immunohistochemical staining. The concentrations of RIPK1 and tumor necrosis factor-α (TNF-α) in nucleus pulposus were detected by ELISA method. The relationship between the concentrations of RIPK1, TNF-α in nucleus pulposus and the Pearce grade of LDH patients was analyzed by one-way ANOVA. The correlation between RIPK1 and TNF-α was analyzed by Pearson.
RESULTS:
RIPK1 was weakly positively expressed in nucleus pulposus of control group, and RIPK1 protein was positively or strongly positively expressed in case group. The expression of RIPK1 mRNA in nucleus pulposus of case group was higher than that of control group (
CONCLUSION
The expression levels of RIPK1 mRNA and protein in the intervertebral disc tissues of LDH patients are higher than those of normal intervertebral disc tissues, and increased with the increase of Pearce grade, which may be an important factor involved in LDH inflammatory disease.
Humans
;
Intervertebral Disc/metabolism*
;
Intervertebral Disc Degeneration
;
Intervertebral Disc Displacement/genetics*
;
Nucleus Pulposus
;
Receptor-Interacting Protein Serine-Threonine Kinases/genetics*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Intradiscal Injection of Autologous Platelet-Rich Plasma Releasate to Treat Discogenic Low Back Pain: A Preliminary Clinical Trial.
Koji AKEDA ; Kohshi OHISHI ; Koichi MASUDA ; Won C. BAE ; Norihiko TAKEGAMI ; Junichi YAMADA ; Tomoki NAKAMURA ; Toshihiko SAKAKIBARA ; Yuichi KASAI ; Akihiro SUDO
Asian Spine Journal 2017;11(3):380-389
STUDY DESIGN: Preliminary clinical trial. PURPOSE: To determine the safety and initial efficacy of intradiscal injection of autologous platelet-rich plasma (PRP) releasate in patients with discogenic low back pain. OVERVIEW OF LITERATURE: PRP, which is comprised of autologous growth factors and cytokines, has been widely used in the clinical setting for tissue regeneration and repair. PRP has been shown in vitro and in vivo to potentially stimulate intervertebral disc matrix metabolism. METHODS: Inclusion criteria for this study included chronic low back pain without leg pain for more than 3 months; one or more lumbar discs (L3/L4 to L5/S1) with evidence of degeneration, as indicated via magnetic resonance imaging (MRI); and at least one symptomatic disc, confirmed using standardized provocative discography. PRP releasate, isolated from clotted PRP, was injected into the center of the nucleus pulposus. Outcome measures included the use of a visual analog scale (VAS) and the Roland-Morris Disability Questionnaire (RDQ), as well as X-ray and MRI (T2-quantification). RESULTS: Data were analyzed from 14 patients (8 men and 6 women; mean age, 33.8 years). The average follow-up period was 10 months. Following treatment, no patient experienced adverse events or significant narrowing of disc height. The mean pain scores before treatment (VAS, 7.5±1.3; RDQ, 12.6±4.1) were significantly decreased at one month, and this was generally sustained throughout the observation period (6 months after treatment: VAS, 3.2±2.4, RDQ; 3.6±4.5 and 12 months: VAS, 2.9±2.8; RDQ, 2.8±3.9; p<0.01, respectively). The mean T2 values did not significantly change after treatment. CONCLUSIONS: We demonstrated that intradiscal injection of autologous PRP releasate in patients with low back pain was safe, with no adverse events observed during follow-up. Future randomized controlled clinical studies should be performed to systematically evaluate the effects of this therapy.
Cytokines
;
Female
;
Follow-Up Studies
;
Humans
;
In Vitro Techniques
;
Intercellular Signaling Peptides and Proteins
;
Intervertebral Disc
;
Intervertebral Disc Degeneration
;
Leg
;
Low Back Pain*
;
Magnetic Resonance Imaging
;
Male
;
Metabolism
;
Outcome Assessment (Health Care)
;
Platelet-Rich Plasma*
;
Regeneration
;
Visual Analog Scale
8.Evaluation of Glycosaminoglycan in the Lumbar Disc Using Chemical Exchange Saturation Transfer MR at 3.0 Tesla: Reproducibility and Correlation with Disc Degeneration.
Min DENG ; Jing YUAN ; Wei Tian CHEN ; Queenie CHAN ; James F GRIFFITH ; Yi Xiang WANG
Biomedical and Environmental Sciences 2016;29(1):47-55
OBJECTIVEThis study aims to explore the clinical applicability and relevance of glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) for intervertebral disc.
METHODS25 subjects ranging in age from 24 yrs to 74 yrs were enrolled. gagCEST was acquired using a single-slice TSE sequence on a 3T. Saturation used a continuous rectangular RF pulse with B1=0.8 µT and a fixed duration time=1100 ms. Sagittal image was obtained firstly without saturation pulse, and then saturated images were acquired at 52 offsets ranging from ±0.125 to ±7 parts per million (ppm). MR T2 relaxivity map was acquired at the identical location. Six subjects were scanned twice to assess scan-rescan reproducibility.
RESULTSGagCEST intraclass correlation coefficient (ICC) of six subjects was 0.759 for nucleus pulposus (NP) and 0.508 for annulus fibrosus (AF). Bland-Altman plots showed NP had a mean difference of 0.10% (95% limits of agreement: -3.02% to 3.22%); while that of AF was 0.34% (95% limits of agreement: -2.28% to 2.95%). For the 25 subjects, gag CEST in NP decreased as disc degeneration increased, with a similar trend to T2 relaxivity. Gag CEST of AF showed a better correlation with disc degeneration than T2 relaxivity.
CONCLUSIONGagCEST in NP and AF decreased as disc degeneration increased, while gagCEST in AF showed a better correlation than T2 relaxivity.
Adult ; Aged ; Biomarkers ; analysis ; Case-Control Studies ; Female ; Glycosaminoglycans ; chemistry ; metabolism ; Humans ; Intervertebral Disc ; chemistry ; metabolism ; Intervertebral Disc Degeneration ; diagnosis ; metabolism ; Lumbar Vertebrae ; Magnetic Resonance Imaging ; methods ; Male ; Middle Aged
9.Biological treatment for intervertebral disc degeneration.
China Journal of Orthopaedics and Traumatology 2016;29(6):576-580
Neck shoulder pain or lumbocrural pain caused by intervertebral disc degeneration (IDD) could seriously affect the qualities life of patients. Current treatments mainly focus on alleviating pain and the symptoms of nerve compression, which could not radically stop the process of intervertebral disc degeneration, but conversely lead to high recurrence rate. In recent years, scholars have turned to study the biological treatment for repair and rebuild the intervertebral disc by biological molecular therapy, gene therapy, cell therapy and tissue engineering to solve the problem of intervertebral disc degeneration, while most of the above methods are still in animal experiments or in vitro experiments and the clinical application is still a long way to go.
Animals
;
Biological Therapy
;
Genetic Therapy
;
Humans
;
Intervertebral Disc
;
metabolism
;
Intervertebral Disc Degeneration
;
genetics
;
metabolism
;
therapy
10.Efficacy of Anti-NaV1.7 Antibody on the Sensory Nervous System in a Rat Model of Lumbar Intervertebral Disc Injury.
Daisuke NOJIMA ; Kazuhide INAGE ; Yoshihiro SAKUMA ; Jun SATO ; Sumihisa ORITA ; Kazuyo YAMAUCHI ; Yawara EGUCHI ; Nobuyasu OCHIAI ; Kazuki KUNIYOSHI ; Yasuchika AOKI ; Junichi NAKAMURA ; Masayuki MIYAGI ; Miyako SUZUKI ; Gou KUBOTA ; Takeshi SAINOH ; Kazuki FUJIMOTO ; Yasuhiro SHIGA ; Koki ABE ; Hirohito KANAMOTO ; Gen INOUE ; Kazuhisa TAKAHASHI ; Seiji OHTORI
Yonsei Medical Journal 2016;57(3):748-753
PURPOSE: The pathophysiology of discogenic low back pain is not fully understood. Tetrodotoxin-sensitive voltage-gated sodium (NaV) channels are associated with primary sensory nerve transmission, and the NaV1.7 channel has emerged as an analgesic target. Previously, we found increased NaV1.7 expression in dorsal root ganglion (DRG) neurons innervating injured discs. This study aimed to examine the effect of blocking NaV1.7 on sensory nerves after disc injury. MATERIALS AND METHODS: Rat DRG neurons innervating the L5/6 disc were labeled with Fluoro-Gold (FG) neurotracer. Twenty-four rats underwent intervertebral disc puncture (puncture group) and 12 rats underwent sham surgery (non-puncture group). The injury group was divided into a saline infusion group (puncture+saline group) and a NaV1.7 inhibition group, injected with anti-NaV1.7 antibody (puncture+anti-NaV1.7 group); n=12 per group. Seven and 14 days post-surgery, L1 to L6 DRGs were harvested and immunostained for calcitonin gene-related peptide (CGRP) (an inflammatory pain marker), and the proportion of CGRP-immunoreactive (IR) DRG neurons of all FG-positive neurons was evaluated. RESULTS: The ratio of CGRP-IR DRG neurons to total FG-labeled neurons in the puncture+saline group significantly increased at 7 and 14 days, compared with the non-puncture group, respectively (p<0.05). Application of anti-NaV1.7 into the disc significantly decreased the ratio of CGRP-IR DRG neurons to total FG-labeled neurons after disc puncture at 7 and 14 days (40% and 37%, respectively; p<0.05). CONCLUSION: NaV1.7 antibody suppressed CGRP expression in disc DRG neurons. Anti-NaV1.7 antibody is a potential therapeutic target for pain control in patients with lumbar disc degeneration.
Animals
;
Antibodies
;
Calcitonin Gene-Related Peptide/metabolism
;
Disease Models, Animal
;
Ganglia, Spinal/*metabolism
;
Intervertebral Disc/*drug effects/*injuries
;
Intervertebral Disc Degeneration/metabolism
;
Low Back Pain/*physiopathology
;
Lumbar Vertebrae/injuries
;
Male
;
NAV1.7 Voltage-Gated Sodium Channel/*metabolism
;
Neurons/*metabolism
;
Pain/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Stilbamidines

Result Analysis
Print
Save
E-mail