1.Pirfenidone inhibits bladder cancer xenograft growth in mice by regulating regulatory T cells.
Hongbo ZHANG ; Mengyu YAN ; Jiandong ZHANG ; Peiwang SUN ; Rui WANG ; Yuanyuan GUO
Journal of Southern Medical University 2025;45(7):1513-1518
OBJECTIVES:
To investigate the inhibitory effect of pirfenidone (PFD) on growth of bladder cancer xenograft and its regulatory effect on Treg cells in tumor-bearing mice.
METHODS:
Thirty-two C57BL/6 mice bearing ectopic bladder tumors were randomized into control and PFD groups (n=16). In PFD group, PFD was administered orally at the daily dose of 500 mg/kg, and tumor growth and survival of the mice were monitored. After treatment for 21 days, the tumors and vital organs were harvested for analysis. Immunohistochemistry was used to assess CD3, CD4, CD8, and FOXP3 expressions in the tumors. Flow cytometry and RT-qPCR were used to analyze the percentage of CD4⁺CD25⁺FOXP3⁺ Treg cells and IL-2, IL-10, and IL-35 expressions in the tumors and spleens; organ damage of the mice was examined with HE staining.
RESULTS:
Compared with the control group, the PFD-treated mice exhibited significantly lower tumor growth rate with smaller tumor volumes at day 21, along with improved survival at day 28. Immunohistochemistry revealed no significant differences in the infiltration of CD3⁺ and CD8⁺ cells between the two groups, but the percentages of CD4⁺ and FOXP3⁺ cells were significantly lower in the tumors of PFD-treated mice. Flow cytometric analysis confirmed a decrease in CD4⁺CD25⁺FOXP3⁺ Treg cells in the tumors from PFD-treated mice, which also had reduced expression levels of IL-2, IL-10 and IL-35 mRNAs in the tumors. No significant differences were found in Treg cell populations or cytokine expressions in the spleen tissues between the two groups. HE staining showed obvious organ damage in neither of the groups.
CONCLUSIONS
PFD inhibits bladder cancer growth and enhances survival of tumor-bearing mice possibly by suppressing Treg cells in the tumor microenvironment.
Animals
;
Urinary Bladder Neoplasms/drug therapy*
;
Mice
;
T-Lymphocytes, Regulatory/metabolism*
;
Mice, Inbred C57BL
;
Interleukins/metabolism*
;
Interleukin-10/metabolism*
;
Cell Line, Tumor
;
Interleukin-2/metabolism*
;
Xenograft Model Antitumor Assays
;
Female
2.Exosome-derived miR-1275 mediates IL-38 upregulation in lymphocytes to suppress lipopolysaccharide-induced apoptosis of myocardial cells in vitro.
Haimei BO ; Xinying CAO ; Pingchuan XING ; Zhijun WANG
Journal of Southern Medical University 2025;45(8):1608-1615
OBJECTIVES:
To investigate the effect of cardiomyocytes-derived exosomes on lipopolysaccharide (LPS)-induced cardiomyocyte injury and its mechanism.
METHODS:
Exosomes isolated from rat cardiomyocytes with or without LPS treatment were co-cultured with rat lymphocytes. The lymphocytes with or without exosome treatment were co-cultured with LPS-induced rat cardiomyocytes for 48 h. Cardiomyocyte apoptosis was detected using flow cytometry, and the expressions of apoptosis marker proteins and the PI3K/AKT pathway proteins were detected using Western blotting. The effects of human recombinant IL-38 protein on apoptosis and protein expressions in LPS-induced cardiomyocytes were examined.
RESULTS:
Compared with normal cardiomyocyte-derived exosomes, the exosomes from LPS-induced cardiomyocytes significantly enhanced proliferation and increased mRNA and protein expression levels of IL-38 in rat lymphocytes. Bioinformatics analysis suggested that miR-1275 in the exosome played a key role in LPS-induced cardiomyocyte injury, and in dual luciferase reporter gene assay, miR-1275 mimics significantly increased luciferase activity of WT-IL-38. Co-culture with lymphocytes treated with exosomes from LPS-induced cardiomyocytes significantly inhibited apoptosis of LPS-induced cardiomyocytes. Treatment with recombinant IL-38 also effectively lowered apoptosis rate of LPS-induced cardiomyocytes, reduced cellular expression of Bax protein, and increased the protein expression levels of Bcl-2, p-PI3K and p-AKT.
CONCLUSIONS
miR-1275 in exosomes derived from LPS-induced cardiomyocytes mediates IL-38 up-regulation expression in lymphocytes to activate the PI3K/AKT pathway and inhibit LPS-induced cardiomyocyte apoptosis.
Apoptosis/drug effects*
;
MicroRNAs/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Animals
;
Lipopolysaccharides
;
Rats
;
Exosomes/metabolism*
;
Up-Regulation
;
Interleukins/metabolism*
;
Lymphocytes/cytology*
;
Cells, Cultured
;
Signal Transduction
;
Coculture Techniques
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
3.IL-24 promotes atopic dermatitis-like inflammation through driving MRSA-induced allergic responses.
Xinmin QIAN ; Meiyi TONG ; Tianqing ZHANG ; Qingqing LI ; Meng HUA ; Nan ZHOU ; Wenwen ZENG
Protein & Cell 2025;16(3):188-210
Atopic dermatitis (AD) is a prevalent inflammatory skin disorder in which patients experience recurrent eczematous lesions and intense itching. The colonization of Staphylococcus aureus (S. aureus) is correlated with the severity of the disease, but its role in AD development remains elusive. Using single-cell RNA sequencing, we uncovered that keratinocytes activate a distinct immune response characterized by induction of Il24 when exposed to methicillin-resistant S. aureus (MRSA). Further experiments using animal models showed that the administration of recombinant IL-24 protein worsened AD-like pathology. Genetic ablation of Il24 or the receptor Il20rb in keratinocytes alleviated allergic inflammation and atopic march. Mechanistically, IL-24 acted through its heterodimeric receptors on keratinocytes and augmented the production of IL-33, which in turn aggravated type 2 immunity and AD-like skin conditions. Overall, these findings establish IL-24 as a critical factor for onset and progression of AD and a compelling therapeutic target.
Dermatitis, Atopic/genetics*
;
Interleukins/metabolism*
;
Animals
;
Methicillin-Resistant Staphylococcus aureus/immunology*
;
Mice
;
Keratinocytes/microbiology*
;
Humans
;
Interleukin-33/immunology*
;
Inflammation/microbiology*
;
Staphylococcal Infections/microbiology*
;
Disease Models, Animal
;
Hypersensitivity/microbiology*
;
Mice, Inbred C57BL
4.Research advance of interleukin 24.
Mengyang ZHU ; Wen CHEN ; Tao ZHANG ; Li XIAO
Chinese Journal of Cellular and Molecular Immunology 2024;40(11):1024-1028
Interleukin 24 (IL-24) is a member of the IL-10 cytokine family and is primarily synthesized by lymphocytes and activated monocytes. IL-24 exerts its immunological functions by interacting with membrane receptors or intracellular proteins, leading to the activation of Janus protein tyrosine kinase/signal transducer and activator of transcription (JAK/STAT), p38 mitogen-activated protein kinase (p38 MAPK), and endoplasmic reticulum stress pathways in target cells. This versatile cytokine has specific abilities to inhibit tumor proliferation and invasion, expedite wound healing, and contribute to cardiovascular protection. IL-24 is involved in the pathogenesis of various autoimmune and inflammatory disorders, presenting itself as a prospective therapeutic target for the treatment of such conditions. This article primarily delves into the role and mechanisms of IL-24 in physiological processes, aiming to provide novel insights and avenues for disease treatment.
Humans
;
Animals
;
Interleukins/physiology*
;
Signal Transduction
;
Endoplasmic Reticulum Stress
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Neoplasms/metabolism*
;
Autoimmune Diseases/metabolism*
;
Inflammation/immunology*
;
STAT Transcription Factors/metabolism*
;
Janus Kinases/metabolism*
5.Expression of interleukin-37, vascular endothelial growth factor A, and transforming growth factor-β1 and their correlation with T cells in children with primary immune thrombocytopenia.
Lin-Lin TONG ; Li-Hua WANG ; Fang FANG ; Bin XU ; Su-Hua ZHENG
Chinese Journal of Contemporary Pediatrics 2023;25(11):1131-1136
OBJECTIVES:
To investigate the expression of interleukin-37 (IL-37), vascular endothelial growth factor A (VEGFA), and transforming growth factor-β1 (TGF-β1) in children with primary immune thrombocytopenia (ITP) and their correlation with T cells.
METHODS:
A retrospective analysis was conducted on 45 children with ITP (ITP group) who were admitted to Handan Central Hospital from January 2020 to April 2022, and 30 healthy children who underwent physical examination during the same period were included as the healthy control group. The mRNA expression levels of IL-37, VEGFA, and TGF-β1 and the levels of regulatory T cells (Treg) and helper T cells 17 (Th17) were measured before and after treatment, and the correlation between the mRNA expression levels of IL-37, VEGFA, and TGF-β1 and the levels of Treg, Th17, and Treg/Th17 ratio were analyzed.
RESULTS:
Compared with the healthy control group, the ITP group had a significantly higher mRNA expression level of IL-37 and a significantly higher level of Th17 before and after treatment, as well as significantly lower mRNA expression levels of VEGFA and TGF-β1 and significantly lower levels of Treg and Treg/Th17 ratio (P<0.05). After treatment, the ITP group had significant reductions in the mRNA expression level of IL-37 and the level of Th17 and significant increases in the mRNA expression levels of VEGFA and TGF-β1 and the levels of Treg and Treg/Th17 ratio (P<0.05). Correlation analysis showed that in the ITP group, the mRNA expression levels of IL-37 and TGF-β1 were negatively correlated with the levels of Treg and Treg/Th17 ratio (P<0.05) and were positively correlated with the level of Th17 (P<0.05) before and after treatment; the mRNA expression level of VEGFA was positively correlated with the levels of Treg and Treg/Th17 ratio (P<0.05) and was negatively correlated with the Th17 level (P<0.05) before and after treatment.
CONCLUSIONS
Abnormal expression levels of IL-37, VEGFA, and TGF-β1 may be observed in children with ITP, which is significantly associated with the imbalance of Treg/Th17 ratio. It is speculated that the cytokines such as IL-37, VEGFA, and TGF-β1 may be involved in the development and progression of ITP or may become important potential targets for the treatment of children with ITP. Citation:Chinese Journal of Contemporary Pediatrics, 2023, 25(11): 1131-1136.
Child
;
Humans
;
Interleukins
;
Purpura, Thrombocytopenic, Idiopathic
;
Retrospective Studies
;
RNA, Messenger/metabolism*
;
T-Lymphocytes, Regulatory
;
Th17 Cells/metabolism*
;
Transforming Growth Factor beta1/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
6.Role of Interleukin-36 in inflammatory joint diseases.
Cunyi WANG ; Ji'an HU ; Jiejun SHI
Journal of Zhejiang University. Medical sciences 2023;52(2):249-259
Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.
Humans
;
Interleukins
;
Arthritis, Rheumatoid
;
Osteoarthritis/pathology*
;
Arthritis, Psoriatic/metabolism*
;
Cytokines
8.Interleukins in the treatment of melanoma.
Xinyuan XU ; Wei DAI ; Chunying LI
Chinese Medical Journal 2022;135(4):393-399
Interleukins (ILs) and associated cytokines serve as the means of communication for immune cells and non-immune cells. The use of ILs in harnessing the immune system to cancer treatment has been a promising approach. ILs not only nurture an environment enabling cancer growth but also simultaneously trigger a productive tumor-directed immune response. These properties of ILs are increasingly being explored as a strategy to improve the outcomes of cancer. Here, we describe recently innovative technological approaches that have been developed to improve the pharmacokinetics, safety, and efficacies of IL-2, 15, 10, and 18 in the treatment of melanoma. Furthermore, the combination of ILs and immune checkpoint inhibition may synergize to reshape the tumor environment, thus yielding better clinical benefits in the future.
Cytokines
;
Humans
;
Interleukins
;
Melanoma/drug therapy*
9.Expression of Tregs and IL-35 in Peripheral Blood of Patients with Newly Diagnosed Acute Myeloid Leukemia.
Pei-Xian YANG ; Pan WANG ; Lei FANG ; Qiong WANG
Journal of Experimental Hematology 2022;30(6):1688-1692
OBJECTIVE:
To explore the expression of regulatory T cells (Tregs) and interleukin-35 (IL-35) in peripheral blood of patients with newly diagnosed acute myeloid leukemia (AML).
METHODS:
Peripheral blood samples were collected from 33 newly diagnosed AML patients and 40 healthy volunteers. The levels of innate and adaptive immune cells and Tregs were detected by flow cytometry. Plasma IL-35 level was detected by enzyme-linked immunosorbent assay (ELISA). The expression levels of P35 and EBI3 mRNA were detected by RT-PCR. The correlation between the levels of Tregs and IL-35 was analyzed.
RESULTS:
The proportion of CD4+T cells, CD8+T cells, B cells and NK cells in peripheral blood of newly diagnosed AML patients were significantly lower than those of control group (P<0.05). The levels of Tregs, IL-35, and the expression of P35 mRNA and EBI3 mRNA were significantly higher than that of healthy control group (P<0.01). The Tregs level was positively correlated with plasma IL-35 level (r=0.668,P<0.01).
CONCLUSION
AML patients have a deficiency in immune function, which is characterized by the high levels of Tregs and IL-35 in peripheral blood, and it might be a new target for the treatment of AML.
Humans
;
Interleukins
;
Leukemia, Myeloid, Acute

Result Analysis
Print
Save
E-mail