1.Mechanism of total flavonoids of Rhododendra simsii in alleviating ischemic brain injury.
Chen-Chen JIANG ; Lei SHI ; Xin-Ya ZHAO ; Hui ZHANG ; Zi-Xu LI ; Jia-Jun LU ; Yu-Xiang HE ; Di CAO ; Hao-Ran HU ; Jun HAN
China Journal of Chinese Materia Medica 2023;48(2):455-464
This study explores the effect of total flavonoids of Rhododendra simsii(TFR) on middle cerebral artery occlusion(MCAO)-induced cerebral injury in rats and oxygen-glucose deprivation/reoxygenation(OGD/R) injury in PC12 cells and the underlying mechanism. The MCAO method was used to induce focal ischemic cerebral injury in rats. Male SD rats were randomized into sham group, model group, and TFR group. After MCAO, TFR(60 mg·kg~(-1)) was administered for 3 days. The content of tumor necrosis factor-α(TNF-α), interleukin-1(IL-1), and interleukin-6(IL-6) in serum was detected by enzyme-linked immunosorbent assay(ELISA). The pathological changes of brain tissue and cerebral infarction were observed based on hematoxylin and eosin(HE) staining and 2,3,5-triphenyltetrazolium chloride(TTC) staining. RT-qPCR and Western blot were used to detect the mRNA and protein levels of calcium release-activated calcium channel modulator 1(ORAI1), stromal interaction molecule 1(STIM1), stromal intera-ction molecule 2(STIM2), protein kinase B(PKB), and cysteinyl aspartate specific proteinase 3(caspase-3) in brain tissues. The OGD/R method was employed to induce injury in PC12 cells. Cells were randomized into the normal group, model group, gene silencing group, TFR(30 μg·mL~(-1)) group, and TFR(30 μg·mL~(-1))+gene overexpression plasmid group. Intracellular Ca~(2+) concentration and apoptosis rate of PC12 cells were measured by laser scanning confocal microscopy and flow cytometry. The effect of STIM-ORAI-regulated store-operated calcium entry(SOCE) pathway on TFR was explored based on gene silencing and gene overexpression techniques. The results showed that TFR significantly alleviated the histopathological damage of brains in MCAO rats after 3 days of admini-stration, reduced the contents of TNF-α, IL-1, and IL-6 in the serum, down-regulated the expression of ORAI1, STIM1, STIM2, and caspase-3 genes, and up-regulated the expression of PKB gene in brain tissues of MCAO rats. TFR significantly decreased OGD/R induced Ca~(2+) overload and apoptosis in PC12 cells. However, it induced TFR-like effect by ORAI1, STIM1 and STIM2 genes silencing. However, overexpression of these genes significantly blocked the effect of TFR in reducing Ca~(2+) overload and apoptosis in PC12 cells. In summary, in the early stage of focal cerebral ischemia-reperfusion injury and OGD/R-induced injury in PC12 cells TFR attenuates ischemic brain injury by inhibiting the STIM-ORAI-regulated SOCE pathway and reducing Ca~(2+) overload and inflammatory factor expression, and apoptosis.
Animals
;
Male
;
Rats
;
Apoptosis
;
Brain Ischemia/metabolism*
;
Caspase 3
;
Interleukin-1
;
Interleukin-6
;
Rats, Sprague-Dawley
;
Reperfusion Injury/metabolism*
;
Tumor Necrosis Factor-alpha/genetics*
;
Flavonoids/pharmacology*
;
Rhododendron/chemistry*
2."Component-target-efficacy" network analysis and experimental verification of Qingkailing Oral Preparation.
Hong-Ying CHEN ; Peng-Fei YAO ; Yan-Qi HAN ; Xu XU ; Jun XU ; Bi-Yan PAN ; Dong-Sheng OUYANG ; Tie-Jun ZHANG
China Journal of Chinese Materia Medica 2023;48(1):170-182
This study aims to explore the mechanism of Qingkailing(QKL) Oral Preparation's heat-clearing, detoxifying, mind-tranquilizing effects based on "component-target-efficacy" network. To be specific, the potential targets of the 23 major components in QKL Oral Preparation were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The target genes were obtained based on UniProt. OmicsBean and STRING 10 were used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the targets. Cytoscape 3.8.2 was employed for visualization and construction of "component-target-pathway-pharmacological effect-efficacy" network, followed by molecular docking between the 23 main active components and 15 key targets. Finally, the lipopolysaccharide(LPS)-induced RAW264.7 cells were adopted to verify the anti-inflammatory effect of six monomer components in QKL Oral Preparation. It was found that the 23 compounds affected 33 key signaling pathways through 236 related targets, such as arachidonic acid metabolism, tumor necrosis factor α(TNF-α) signaling pathway, inflammatory mediator regulation of TRP channels, cAMP signaling pathway, cGMP-PKG signaling pathway, Th17 cell differentiation, interleukin-17(IL-17) signaling pathway, neuroactive ligand-receptor intera-ction, calcium signaling pathway, and GABAergic synapse. They were involved in the anti-inflammation, immune regulation, antipyretic effect, and anti-convulsion of the prescription. The "component-target-pathway-pharmacological effect-efficacy" network of QKL Oral Preparation was constructed. Molecular docking showed that the main active components had high binding affinity to the key targets. In vitro cell experiment indicated that the six components in the prescription(hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide) can reduce the expression of nitric oxide(NO), TNF-α, and interleukin-6(IL-6) in cell supernatant(P<0.05). Thus, the above six components may be the key pharmacodynamic substances of QKL Oral Preparation. The major components in QKL Oral Prescription, including hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide, cholic acid, isochlorogenic acid A, and γ-aminobutyric acid, may interfere with multiple biological processes related to inflammation, immune regulation, fever, and convulsion by acting on the key protein targets such as IL-6, TNF, prostaglandin-endoperoxide synthase 2(PTGS2), arachidonate 5-lipoxygenase(ALOX5), vascular cell adhesion molecule 1(VCAM1), nitric oxide synthase 2(NOS2), prostaglandin E2 receptor EP2 subtype(PTGER2), gamma-aminobutyric acid receptor subunit alpha(GABRA), gamma-aminobutyric acid type B receptor subunit 1(GABBR1), and 4-aminobutyrate aminotransferase(ABAT). This study reveals the effective components and mechanism of QKL Oral Prescription.
Chlorogenic Acid
;
Drugs, Chinese Herbal/pharmacology*
;
gamma-Aminobutyric Acid
;
Interleukin-6
;
Medicine, Chinese Traditional
;
Molecular Docking Simulation
;
Tumor Necrosis Factor-alpha/genetics*
;
Animals
;
Mice
;
RAW 264.7 Cells
3.Mechanism of Buyang Huanwu Decoction glycosides against atherosclerotic inflammation through NF-κB signaling pathway.
Xin-Ying FU ; Zheng-Ji SUN ; Qing-Yin LONG ; Wei TAN ; Yan-Jun LI ; Lu WU ; Qing-Hu HE ; Wei ZHANG
China Journal of Chinese Materia Medica 2023;48(1):202-210
This study aims to explore the effect of Buyang Huanwu Decoction glycosides on the inflammatory response of apolipoprotein E~(-/-)(ApoE~(-/-)) mice and RAW264.7 cells through nuclear factor kappa-B(NF-κB) signaling pathway. In the in vivo experiment, ApoE~(-/-) mice were fed with high-fat diets for 12 weeks to induce the animal model of atherosclerosis, and 75 μg·mL~(-1) oxidized low-density lipoprotein(Ox-LDL) incubated RAW264.7 cells for 24 h to establish the atherosclerosis cell model. Automatic biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), Western blot, and droplet digital polymerase chain reaction(PCR) were used to determine the blood lipid levels, aortic intimal thickness, inflammatory factor content, NF-κB pathway-related proteins, and mRNA expression levels, and evaluate arterial atherosclerotic lesions and anti-atherosclerotic mechanisms of the drug. The model of atherosclerosis was successfully established in ApoE~(-/-) mice after 12 weeks of feeding with high-fat diets. In the model group, the plasma levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-C) were increased(P<0.01), the intima of the blood vessels was thickened, the levels of inflammatory factors tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were increased, and the protein and mRNA expressions of NF-κB and inhibitor of NF-κB(IκBα) were significantly increased as compared with the control group. Compared with the model group, the high-dose Buyang Huanwu Decoction glycoside group decreased the plasma levels of TC, TG, and LDL-C, reduced the plaque area and thickness and the content of inflammatory factor TNF-α, and inhibited the protein and mRNA expressions of NF-κB and IκBα, with the effect same as Buyang Huanwu Decoction. In the in vivo experiment, 75 μg·mL~(-1) Ox-LDL stimulated RAW264.7 cells for 24 h to successfully establish a foam cell model. As compared with the control group, the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα in the model group increased. Compared with the model group, the middle-dose and high-dose Buyang Huanwu Decoction glycoside groups decreased the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα. The above results show that the glycosides are the main effective substances of Buyang Huanwu Decoction against atherosclerosis, which inhibit the NF-κB pathway and reduce the inflammatory response, thus playing the role against atherosclerotic inflammation same as Buyang Huanwu Decoction.
Mice
;
Animals
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Glycosides/pharmacology*
;
Cholesterol, LDL
;
Atherosclerosis/genetics*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Interleukin-6
;
Apolipoproteins E/pharmacology*
;
RNA, Messenger/metabolism*
4.Effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/PPARγ pathway in arrhythmic rats.
Wei-Ping HE ; Jin-Cheng LI ; Gao-Ming WANG
China Journal of Chinese Materia Medica 2023;48(1):220-225
This paper aimed to investigate the effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/peroxisome proliferator-activated receptor γ(PPARγ) pathway in arrhythmic rats. SD rats were randomly divided into a control group, a model group, a low-dose(20 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a medium-dose(40 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a high-dose(80 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a propranolol hydrochloride(2 mg·kg~(-1)) group, with 12 rats in each group. Except the control group, rats in other groups were prepared as models of arrhythmia by sublingual injection of 1 mL·kg~(-1) of 0.002% aconitine. After grouping and intervention with drugs, the arrhythmia, myocardial cells apoptosis, myocardial tissue glutathione peroxidase(GSH-Px), catalase(CAT), malondialdehyde(MDA), serum interleukin-6(IL-6), prostaglandin E2(PGE2) levels, myocardial tissue apoptosis, and Wnt/β-catenin/PPARγ pathway-related protein expression of rats in each group were measured. As compared with the control group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA levels in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels increased significantly in the model group, whereas the GSH-Px and CAT levels, and Bcl-2 and PPARγ protein expression levels in myocardial tissues reduced significantly. As compared with the model group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA leve in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels reduced in the drug intervention groups, whereas the GSH-Px and CAT levels and Bcl-2 and PPARγ protein expression levels in myocardial tissues increased. The groups of total flavonoids of buckwheat flower and leaf were in a dose-dependent manner. There was no significant difference in the levels of each index in rats between the propranolol hydrochloride group and the high-dose group of total flavonoids of buckwheat flower and leaf. The total flavonoids of buckwheat flower and leaf inhibit the activation of Wnt/β-catenin pathway, up-regulate the expression of PPARγ, reduce oxidative stress and inflammatory damage in myocardial tissues of arrhythmic rats, reduce myocardial cell apoptosis, and improve the symptoms of arrhythmia in rats.
Rats
;
Animals
;
PPAR gamma/metabolism*
;
Fagopyrum/genetics*
;
Rats, Sprague-Dawley
;
bcl-2-Associated X Protein
;
beta Catenin/metabolism*
;
Interleukin-6
;
Flavonoids/pharmacology*
;
Propranolol/pharmacology*
;
Ventricular Fibrillation
;
Dinoprostone
;
Wnt Signaling Pathway
;
Plant Leaves/metabolism*
;
Flowers/metabolism*
;
Apoptosis
;
Cardiac Complexes, Premature
5.Effects of Huangqin Tang on NLRP3/Caspase-1 pathway in mice model of ulcerative colitis.
Meng-Ru LIU ; Hui LI ; Lan-Fu WEI ; Xiao-Tong LIU ; Zhen-Tao AN ; Li-Mei GU ; Yao-Zhou TIAN
China Journal of Chinese Materia Medica 2023;48(1):226-233
The aim of this study was to explore the effects of Huangqin Tang(HQT) on the NLRP3/Caspase-1 signaling pathway in mice with DSS-induced ulcerative colitis(UC). C57BL/6J mice were randomly divided into a blank group, a model group(DSS group), and low-, medium-and high-dose HQT groups(HQT-L, HQT-M, and HQT-H), and western medicine mesalazine group(western medicine group). The UC model was induced in mice. Subsequently, the mice in the HQT-L, HQT-M, HQT-H groups, and the western medicine group were given low-, medium-, high-dose HQT, and mesalazine suspension by gavage, respectively, while those in the blank and DSS groups were given an equal volume of distilled water by gavage. After 10 days of administration, the body weight, DAI scores, and colonic histopathological score of mice in each group were determined. The levels of IL-6, IL-10, IL-1β, and TNF-α in serum were determined by ELISA. The mRNA expression of NLRP3 and Caspase-1 in colon tissues was determined by RT-qPCR. The protein expression of NLRP3 and Caspase-1 in colon tissues was detected by immunohistochemistry. The results showed that compared with the blank group, the DSS group showed decreased body weight of mice and increased DAI scores and intestinal histopathological score. Compared with the DSS group, the HQT groups and the western medicine group showed improved DAI scores, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). The intestinal histopathological scores of the HQT groups and the western medicine group significantly decreased, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). In addition, compared with the blank group, the DSS group showed elevated expression of NLRP3 and Caspase-1 in colon tissues, increased serum levels of IL-6, IL-1β, and TNF-α, and decreased IL-10 level. Compared with the DSS group, the HQT groups and the western medicine group displayed decreased expression of NLRP3 and Caspase-1 in colon tissues, reduced serum levels of IL-6, IL-1β, and TNF-α, and increased IL-10 level. The improvement was the most significant in the HQT-H group and the western medicine group(P<0.01). In conclusion, HQT may reduce the expression of NLRP3 and Caspase-1 in colon tissues, reduce the se-rum levels of IL-6, IL-1β, and TNF-α, and increase the expression of IL-10 by regulating the classic pyroptosis pathway of NLRP3/Caspase-1, thereby improving the symptoms of intestinal injury and inflammatory infiltration of intestinal mucosa in DSS mice to achieve its therapeutic effect.
Animals
;
Mice
;
Caspase 1/genetics*
;
Colitis, Ulcerative/genetics*
;
Colon
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Interleukin-10/genetics*
;
Interleukin-6/genetics*
;
Mesalamine/pharmacology*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Scutellaria baicalensis/chemistry*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
6.Effects of total ginsenosides from Panax ginseng stems and leaves on gut microbiota and short-chain fatty acids metabolism in acute lung injury mice.
Qi DING ; Si-Wen FENG ; Gong-Hao XU ; Ye-Yang CHEN ; Yuan-Yuan SHI
China Journal of Chinese Materia Medica 2023;48(5):1319-1329
This study aimed to investigate the biological effects and underlying mechanisms of the total ginsenosides from Panax ginseng stems and leaves on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in mice. Sixty male C57BL/6J mice were randomly divided into a control group, a model group, the total ginsenosides from P. ginseng stems and leaves normal administration group(61.65 mg·kg~(-1)), and low-, medium-, and high-dose total ginsenosides from P. ginseng stems and leaves groups(15.412 5, 30.825, and 61.65 mg·kg~(-1)). Mice were administered for seven continuous days before modeling. Twenty-four hours after modeling, mice were sacrificed to obtain lung tissues and calculate lung wet/dry ratio. The number of inflammatory cells in bronchoalveolar lavage fluid(BALF) was detected. The levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in BALF were detected. The mRNA expression levels of IL-1β, IL-6, and TNF-α, and the levels of myeloperoxidase(MPO), glutathione peroxidase(GSH-Px), superoxide dismutase(SOD), and malondialdehyde(MDA) in lung tissues were determined. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in lung tissues. The gut microbiota was detected by 16S rRNA sequencing, and gas chromatography-mass spectrometry(GC-MS) was applied to detect the content of short-chain fatty acids(SCFAs) in se-rum. The results showed that the total ginsenosides from P. ginseng stems and leaves could reduce lung index, lung wet/dry ratio, and lung damage in LPS-induced ALI mice, decrease the number of inflammatory cells and levels of inflammatory factors in BALF, inhibit the mRNA expression levels of inflammatory factors and levels of MPO and MDA in lung tissues, and potentiate the activity of GSH-Px and SOD in lung tissues. Furthermore, they could also reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Lachnospiraceae and Muribaculaceae, decrease the relative abundance of Prevotellaceae, and enhance the content of SCFAs(acetic acid, propionic acid, and butyric acid) in serum. This study suggested that the total ginsenosides from P. ginseng stems and leaves could improve lung edema, inflammatory response, and oxidative stress in ALI mice by regulating gut microbiota and SCFAs metabolism.
Mice
;
Male
;
Animals
;
Ginsenosides/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
Panax/genetics*
;
Lipopolysaccharides/adverse effects*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Mice, Inbred C57BL
;
Acute Lung Injury/genetics*
;
Lung/metabolism*
;
Superoxide Dismutase/metabolism*
;
Plant Leaves/metabolism*
;
RNA, Messenger
7.miR-18a ameliorates inflammation and tissue injury in a mouse model of allergic rhinitis via blocking TLR4/NF-κB pathway.
Jun YANG ; Qingyun LI ; Lu WANG ; Hui XIE
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):680-685
Objective To investigate the role of microRNA-18a (miR-18a) in the pathogenesis of allergic rhinitis in mice. Methods Twenty-two BALB/c mice were randomly divided into a blank group, a model group and a miR-18a group. Mice in the model group and the miR-18a group were injected intraperitoneally with obumin (OVA) suspension to prepare allergic rhinitis models, and mice in the miR-18a group were simultaneously given lentiviral vector plasmid for overexpression of miR-18a. Allergy symptoms were evaluated by the behavioral score and HE staining. The plasma levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) were measured by ELISA. The distribution of CD45+ cells in nasal mucosa was measured by immunofluorescence histochemistry, and CD45+ cells in nasal lavage fluid were measured by flow cytometry. The mRNA expression levels of IL-1β, IL-6 and TNF-α in nasal mucosa tissues were measured by fluorescence quantitative PCR, and the protein expressions of Toll like receptor 4 (TLR4), nuclear factor κB p65 (NF-κB p65), inhibitor of NF-κB α (IκBα) and phosphorylated IκBα (p-IκBα) in nasal mucosa were measured by Western blot analysis. Results Compared with the blank group, the plasma levels of IL-1β, IL-6, and TNF-α in the model group increased significantly. The number of CD45+ cells in both nasal mucosa tissue and nasal irrigation fluid increased, and the mRNA levels of IL-1β, IL-6 and TNF-α and the protein expression levels of TLR4, NF-κB p65 and p-IκBα in nasal mucosa increased. Compared with the model group, the plasma levels of IL-1β, IL-6 and TNF-α in the miR-18a group decreased significantly. The number of CD45+ cells in both nasal mucosa tissue and nasal lavage fluid decreased, and the mRNA levels of IL-1β, IL-6 and TNF-α and the exprotein expression levels of TLR4, NF-κB p65 and p-IκBα in nasal mucosa decreased. Conclusion miR-18a can inhibit the occurrence and development of allergic rhinitis, and its molecular mechanism is related to the inhibition of TLR4/NF-κB pathway activation.
Animals
;
Mice
;
Disease Models, Animal
;
Inflammation
;
Interleukin-6/genetics*
;
MicroRNAs/genetics*
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha
;
Rhinitis, Allergic
;
RNA, Messenger
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/genetics*
8.Screening and obataining of aptamers for the blood group antigen-binding adhesin (BabA) to block Helicobacter pylori (H.pylori) colonization in the stomach of mice.
Yuan YUAN ; Weipeng LI ; Xiaojing ZHOU ; Weili SUN ; Xiaolei TANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(9):793-800
Objective To explore the aptamer specific binding blood group antigen-binding adhesin (BabA) of Helicobacter pylori (H.pylori) for blocking of H.pylori adhering host cell. Methods H.pylori strain was cultured and its genome was extracted as templates to amplify the BabA gene by PCR with designed primers. The BabA gene obtained was cloned and constructed into prokaryotic expression plasmid, which was induced by isopropyl beta-D-galactoside (IPTG) and purified as target. The single stranded DNA (ssDNA) aptamers that specifically bind to BabA were screened by SELEX. Enzyme-linked oligonucleotide assay (ELONA) was used to detect and evaluate the characteristics of candidate aptamers. The blocking effect of ssDNA aptamers on H.pylori adhesion was subsequently verified by flow cytometry and colony counting at the cell level in vitro and in mouse model of infection, respectively. Meanwhile, the levels of cytokines, interleukin 6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), IL-10 and IL-4 in the homogenate of mouse gastric mucosa cells were detected by ELISA. Results The genome of H.pylori ATCC 43504 strains was extracted and the recombinant plasmid pET32a-BabA was constructed. After induction and purification, the relative molecular mass (Mr) of the recombinant BabA protein was about 39 000. The amino acid sequence of recombinent protein was consistent with BabA protein by peptide mass fingerprint (PMF). Five candidate aptamers were selected to bind to the above recombinent BabA protein by SELEX. The aptamers A10, A30 and A42 identified the same site, while A3, A16 and the above three aptamers identified different sites respectively. The aptamer significantly blocked the adhesion of H.pylori in vitro. Animal model experiments showed that the aptamers can block the colonization of H.pylori in gastric mucosa by intragastric injection and reduce the inflammatory response. The levels of IL-4, IL-6, IL-8 and TNF-α in gastric mucosal homogenates in the model group with aptamer treatment were lower than that of model group without treatment. Conclusion Aptamers can reduce the colonization of H.pylori in gastric mucosa via binding BabA to block the adhesion between H.pylori and gastric mucosal epithelial cells.
Animals
;
Mice
;
Helicobacter pylori/genetics*
;
Interleukin-4
;
Interleukin-6
;
Interleukin-8
;
Tumor Necrosis Factor-alpha
;
Stomach
;
Oligonucleotides
;
Adhesins, Bacterial/genetics*
;
Blood Group Antigens
9.Proanthocyanidins alleviate lipopolysaccharide-induced inflammatory response by up-regulating SIRT1 expression and inhibiting NF-κB pathway in mouse RAW264.7 macrophages.
Yunwei WANG ; Hua YANG ; Zhihong WANG ; Yunshu YANG ; Yang LIU
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):878-883
Objective To investigate the role of proanthocyanidins (PC) in lipopolysaccharide (LPS)-induced inflammatory response and its possible mechanism in RAW264.7 macrophages. Methods RAW264.7 macrophages were cultured and treated with PBS and different concentrations of PC for 24 hours, followed by 1 μg/mL LPS for 6 hours. Real-time PCR was used to detect the mRNA expression of interleukin1β (IL-1β), IL-6, monocyte chemoattractant protein 1 (MCP-1), tumor necrotic factor α (TNF-α), IL-4 and arginase 1 (Arg1) in RAW264.7 macrophages. Flow cytometry was used to detect the effects of PBS group, LPS group and PC combined with LPS group on M1 and M2 polarization of macrophages. The protein expressions of silenced information regulator 1 (SIRT1), nuclear factor kappa B p65(NF-κB p65) and acetylated NF-κB p65 (Ace-p65) were detected by Western blot analysis after different concentrations of PC treatment. Co-immunoprecipitation assay was used to detect the binding effect of SIRT1 to NF-κB p65 in macrophages treated with PC. Results Compared with PBS group, the mRNA expression of macrophage pro-inflammatory cytokines IL-1β, IL-6, MCP-1 and TNF-α decreased and the mRNA expression of anti-inflammatory factors IL-4 and Arg1 increased in PC group. Compared with LPS group, PC combined with LPS group could significantly inhibit M1 polarization and promote M2 polarization of macrophages. With the increase of PC concentration, the expression of SIRT1 was up-regulated, and NF-κB p65 protein did not change significantly. The expression of Ace-p65 protein decreased significantly when treated with high concentration of PC. Conclusion PC can significantly alleviate the LPS-induced inflammatory response by up-regulating the expression of SIRT1 and inhibiting NF-κB pathway in RAW264.7 macrophages.
Animals
;
Mice
;
Interleukin-4
;
Interleukin-6
;
Lipopolysaccharides
;
Macrophages
;
NF-kappa B
;
Proanthocyanidins
;
RNA, Messenger
;
Sirtuin 1/genetics*
;
Tumor Necrosis Factor-alpha
;
RAW 264.7 Cells
10.Effects of Foxp3 gene silencing on the expression of inflammatory cytokines and the proliferation and migration of human periodontal ligament fibroblasts in an inflammatory environment.
Ting LU ; Jiahao ZHU ; Shihe YANG ; Zhe SHEN ; Liangjun ZHONG
West China Journal of Stomatology 2023;41(3):269-275
OBJECTIVES:
This study aimed to clarify the effects of Foxp3 silencing on the expression of inflammatory cytokines in human periodontal ligament cells (hPDLFs) in an inflammatory environment and on cell proliferation and invasiveness, as well as to explore the role of Foxp3 gene in the development of periodontitis.
METHODS:
An small interfering RNA (siRNA) construct specific for Foxp3 was transfected into hPDLFs. Foxp3 silencing efficiency was verified by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, and the siRNA with the optimum silencing effect of Foxp3 gene was screened. Using lipopolysaccharide to simulate an inflammatory environment in vitro, CCK-8 detected the effect of silencing Foxp3 on hPDLFs proliferation under inflammatory conditions. Wound-healing experiments and transwell assays were conducted to detect the effect of silencing Foxp3 on hPDLF migration under inflammatory conditions. The expression of the inflammatory cytokines interleukin (IL)-6 and IL-8 was detected by RT-PCR and Western blotting under inflammatory conditions.
RESULTS:
After siRNA transfection, RT-PCR and Western blotting analyses showed that the expression of Foxp3 mRNA in the Foxp3-si3 group decreased significantly (t=21.03, P<0.000 1), and the protein expression of Foxp3 also decreased significantly (t=12.8, P<0.001). In the inflammatory environment, Foxp3 gene silencing had no significant effect on hPDLFs proliferation (P>0.05), and Foxp3 gene silencing promoted hPDLFs migration (P<0.05). Moreover, the expression of IL-6 and IL-8 increased (P<0.05).
CONCLUSIONS
In an inflammatory environment, Foxp3 gene silencing promoted hPDLFs migration but had no significant effect on hPDLFs proliferation. The expression of inflammatory factors expressed in hPDLFs increased after Foxp3 gene silencing, indicating that Foxp3 gene inhibited inflammation in periodontitis.
Humans
;
Cell Proliferation/genetics*
;
Cells, Cultured
;
Cytokines/metabolism*
;
Fibroblasts/metabolism*
;
Forkhead Transcription Factors/metabolism*
;
Gene Silencing
;
Interleukin-6/metabolism*
;
Interleukin-8/metabolism*
;
Periodontal Ligament/metabolism*
;
Periodontitis/metabolism*
;
RNA, Small Interfering/metabolism*
;
Transcription Factors/metabolism*

Result Analysis
Print
Save
E-mail