1.Effect of Evodiamine on immune function of allergic rhinitis rats by regulating CCL2/CCR2 signaling pathway.
Xiaoli WANG ; Wei LI ; Shan ZHU ; Xingchan SHI ; Wei CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):300-307
Objective To explore the effect of Evodiamine (Evo) on the immune function of allergic rhinitis (AR) rats and the regulatory mechanism on C-C motif chemokine ligand 2 (CCL2)/ C-C motif chemokine receptor 2 (CCR2) pathway. Methods The related targets of Evo-AR-immune function were screened by network pharmacology, and the protein interaction network diagram of intersecting targets was constructed. The AR rat model was established by ovalbumin (OVA) combined with aluminium hydroxide, and the rats were divided into six groups: a normal control (NC) group, a model group, a Loratadine (LOR) group, an Evodiamine low dose (Evo-L) group, a Evodiamine high dose (Evo-H) groups, and an Evo-H combined with CCL2 group. After the last administration, the symptoms of rats in each group were scored; ELISA was applied to detect the levels of histamine, immunoglobulin E (IgE), interleukin 4 (IL-4), IL-13 and interferon γ (IFN-γ); Diff-Quick staining solution was applied to detecte the number of cells in the nasal lavage fluid (NALF); hematoxylin eosin (HE) staining was applied to observe the pathological changes of nasal mucosa tissue; real-time quantitative PCR was applied to detect the levels of CCL2 and CCR2 mRNA in tissue; Western blot was applied to detect the expression levels of CCL2, CCR2 and CXC motif chemokine ligand 8 (CXCL8) proteins in nasal mucosa. Results There were eight intersection targets of EVo-AR-immune function, and protein interaction network diagram showed that CXCL8 was the core target. Compared with the NC group, the score of nasal symptoms, the levels of histamine, IgE, IL-4 and IL-13, the numbers of eosinophil, macrophages, neutrophils, lymphocytes and total cells, the mRNA and protein expression levels of CCL2 and CCR2, and the expression of CXCL8 protein in the model group were increased, while the level of IFN-γ was decreased. Compared with the model group, the score of nasal symptoms, the levels of histamine, IgE, IL-4 and IL-13, the numbers of eosinophil, macrophages, neutrophils, lymphocytes and total cells, the mRNA and protein expression levels of CCL2 and CCR2, and the expression of CXCL8 protein in LOR and Evo groups were decreased, while the level of IFN-γ was increased. Further use of CCL2 recombinant protein for compensatory experiments revealed that the improvement effect of Evo on immune function in AR rats was reversed by CCL2. Conclusion Evo can improve the immune function of AR rats, and its mechanism may be related to the inhibition of the CCL2/CCR2 pathway.
Animals
;
Receptors, CCR2/immunology*
;
Signal Transduction/drug effects*
;
Chemokine CCL2/immunology*
;
Rats
;
Rhinitis, Allergic/metabolism*
;
Immunoglobulin E/blood*
;
Quinazolines/pharmacology*
;
Male
;
Interferon-gamma
;
Rats, Sprague-Dawley
;
Interleukin-13
;
Histamine
;
Interleukin-4/immunology*
;
Disease Models, Animal
2.Research on the inhibitory effects of evodiamine on activated T cell proliferation.
Jianan TANG ; Xingyan LUO ; Jingjing HE ; Xiaoxin ZENG ; Yang LIU ; Yi LAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):524-530
Objective To explore the characteristics of the inhibitory effect of Evodiamine on the proliferation of activated T cells. Methods Mononuclear cells from peripheral blood (PBMCs) were obtained from healthy donors through density gradient centrifugation, and T cells were subsequently purified by using immunomagnetic bead separation. T cell activation was induced by employing anti-human CD3 and anti-human CD28 antibodies. T cells were treated with different concentrations of EVO (0.37, 1.11, 3.33, and 10)μmol/L. Flow cytometry was applied to evaluate the proliferation index, apoptosis rate, viability, CD25 expression levels, and cell cycle distribution of T cells. The expression levels of cytokines IL-2, IL-17A, IL-4, and IL-10 were quantified by using ELISA. Results 1.11, 3.33 and 10 μmol/L EVO effectively inhibited the proliferation of activated T cells, with an IC50 of (1.5±0.3)μmol/L. EVO did not induce apoptosis in activated T cells and affect the survival rate of resting T cells. EVO did not affect the expression of CD25 and the secretion of IL-2 in activated T cells. EVO arrested the T cell cycle at the G2/M phase, resulting in an increase in G2/M phase cells, and exhibited a concentration-dependent effect. EVO did not affect the secretion of IL-4, IL-10 by activated T cells, but significantly inhibited the secretion of IL-17A. Conclusion EVO did not significantly affect the activation process of T cells but inhibited T cell proliferation by arresting the cell cycle at the G2/M phase and significantly suppressed the secretion of the pro-inflammatory cytokine IL-17A, which suggests that EVO has the potential to serve as a lead compound for the development of low-toxicity and high-efficiency immunosuppressants and elucidates the mechanisms underlying the anti-inflammatory and immunomodulatory effects of the traditional Chinese medicine Evodia rutaecarpa.
Humans
;
Cell Proliferation/drug effects*
;
Quinazolines/pharmacology*
;
T-Lymphocytes/metabolism*
;
Lymphocyte Activation/drug effects*
;
Apoptosis/drug effects*
;
Interleukin-4/metabolism*
;
Interleukin-10/metabolism*
;
Interleukin-2 Receptor alpha Subunit/metabolism*
;
Interleukin-17/metabolism*
;
Interleukin-2/metabolism*
;
Cell Cycle/drug effects*
;
Cells, Cultured
3.LuoFuShan Rheumatism Plaster ameliorates neuropathic pain in mice by suppressing TLR4/TNF-α signaling.
Yufang FU ; Weiling TAN ; Xiaocui LI ; Rongtian LIN ; Shuwen LIU ; Ling YE
Journal of Southern Medical University 2025;45(11):2285-2296
OBJECTIVES:
To explore the therapeutic effect of LuoFuShan Rheumatism Plaster (LFS) on neuropathic pain (NP) and its molecular mechanism.
METHODS:
Mouse models of sciatic nerve chronic constriction injury (CCI) were treated with low, medium, and high doses (2.2, 4.4, and 8.8 cm2, respectively) of LFS by topical application for 14 consecutive days. The therapeutic effects were assessed by evaluating the mechanical withdrawal threshold (MWT), paw withdrawal latency (PWL), plasma IL-6 and TNF-α levels, and histopathology of the sciatic nerve. Network pharmacology and molecular docking were used to identify the key targets and signaling pathways. The key targets were verified by RT-qPCR and immunohistochemistry. The biosafety of LFS was evaluated by measuring the organ indices and damage indicators of the heart, liver, and kidneys.
RESULTS:
Compared with the CCI group, LFS dose-dependently increased MWT and PWL, reduced plasma IL-6 and TNF-α levels, and alleviated sciatic nerve inflammation in the mouse models. Network pharmacology identified 378 bioactive compounds targeting 279 NP-associated genes enriched in TLR and TNF signaling. Molecular docking showed that quercetin and ursolic acid in LFS could stably bind to TLR4 and TNF‑α. In the mouse models of sciatic nerve CCI, LFS significantly downregulated the mRNA expression levels of Tlr4 and Tnf-α in the spinal cord in a dose-dependent manner and lowered the protein expressions of TLR4 and TNF-α in the sciatic nerve. LFS treatment did not cause significant changes in the organ indices or damage indicators of the heart, liver and kidneys as compared with those in the CCI model group and sham-operated group.
CONCLUSIONS
LFS alleviates NP in mice by suppression of TLR4/TNF-α-mediated neuroinflammation with a good safety profile.
Animals
;
Toll-Like Receptor 4/metabolism*
;
Neuralgia/metabolism*
;
Mice
;
Signal Transduction/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Sciatic Nerve/injuries*
;
Male
;
Molecular Docking Simulation
;
Disease Models, Animal
;
Interleukin-6
4.Total Saponin Fraction of Dioscorea Nipponica Makino Improves Gouty Arthritis Symptoms in Rats via M1/M2 Polarization of Monocytes and Macrophages Mediated by Arachidonic Acid Signaling.
Qi ZHOU ; Hui-Juan SUN ; Xi-Wu ZHANG
Chinese journal of integrative medicine 2023;29(11):1007-1017
OBJECTIVE:
To explore the mechanism of effects of total saponin fraction from Dioscorea Nipponica Makino (TSDN) on M1/M2 polarization of monocytes/macrophages and arachidonic acid (AA) pathway in rats with gouty arthritis (GA).
METHODS:
Seventy-two Sprague Dawley rats were randomly divided into 4 groups (n=18 in each): normal, model, TSDN at 160 mg/kg, and celecoxib at 43.3 mg/kg. Monosodium urate crystal (MSU) was injected into the rats' ankle joints to induce an experimental GA model. Blood and tissue samples were collected on the 3rd, 5th, and 8th days of drug administration. Histopathological changes in the synovium of joints were observed via hematoxylin and eosin (HE) staining. The expression levels of arachidonic acid (AA) signaling pathway were assessed via real-time polymerase chain reaction (qPCR) and Western blot. Flow cytometry was used to determine the proportion of M1 and M2 macrophages in the peripheral blood. An enzyme-linked immunosorbent assay (ELISA) was used to detect interleukine (IL)-1 β, tumor necrosis factor-alpha (TNF-α), IL-4, IL-10, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4).
RESULTS:
HE staining showed that TSDN improved the synovial tissue. qPCR and Western blot showed that on the 3rd, 5th and 8th days of drug administration, TSDN reduced the mRNA and protein expressions of cyclooxygenase (COX)2, microsomal prostaglandin E synthase-1 derived eicosanoids (mPGES-1), 5-lipoxygenase (5-LOX), recombinant human mothers against decapentaplegic homolog 3 (Smad3), nucleotide-binding oligomerization domain-like receptor protein 3 (NALP3), and inducible nitric oxide synthase (iNOS) in rats' ankle synovial tissues (P<0.01). TSDN decreased COX1 mRNA and protein expression on 3rd and 5th day of drug administration and raised it on the 8th day (both P<0.01). It lowered CD68 protein expression on days 3 (P<0.01), as well as mRNA and protein expression on days 5 and 8 (P<0.01). On the 3rd, 5th, and 8th days of drug administration, TSDN elevated the mRNA and protein expression of Arg1 and CD163 (P<0.01). Flow cytometry results showed that TSDN decreased the percentage of M1 macrophages while increasing the percentage of M2 in peripheral blood (P<0.05 or P<0.01). ELISA results showed that on the 3rd, 5th, and 8th days of drug administration, TSDN decreased serum levels of IL-1 β, TNF-α, and LTB4 (P<0.01), as well as PGE2 levels on days 3rd and 8th days (P<0.05 or P<0.01); on day 8 of administration, TSDN increased IL-4 serum levels and enhanced IL-10 contents on days 5 and 8 (P<0.05 or P<0.01).
CONCLUSION
The anti-inflammatory effect of TSDN on rats with GA may be achieved by influencing M1/M2 polarization through AA signaling pathway.
Rats
;
Humans
;
Animals
;
Arthritis, Gouty/drug therapy*
;
Monocytes/pathology*
;
Interleukin-10/metabolism*
;
Arachidonic Acid/pharmacology*
;
Dioscorea/chemistry*
;
Rats, Wistar
;
Tumor Necrosis Factor-alpha/metabolism*
;
Saponins/therapeutic use*
;
Interleukin-4/metabolism*
;
Leukotriene B4/pharmacology*
;
Rats, Sprague-Dawley
;
Macrophages
;
Signal Transduction
;
RNA, Messenger/metabolism*
5.Effects of Aeriscardovia aeriphila on growth performance, antioxidant functions, immune responses, and gut microbiota in broiler chickens.
Muhammad Zahid FAROOQ ; Xinkai WANG ; Xianghua YAN
Journal of Zhejiang University. Science. B 2023;24(11):1014-1026
Aeriscardovia aeriphila, also known as Bifidobacterium aerophilum, was first isolated from the caecal contents of pigs and the faeces of cotton-top tamarin. Bifidobacterium species play important roles in preventing intestinal infections, decreasing cholesterol levels, and stimulating the immune system. In this study, we isolated a strain of bacteria from the duodenal contents of broiler chickens, which was identified as A. aeriphila, and then evaluated the effects of A. aeriphila on growth performance, antioxidant functions, immune functions, and gut microbiota in commercial broiler chickens. Chickens were orally gavaged with A. aeriphila (1×109 CFU/mL) for 21 d. The results showed that A. aeriphila treatment significantly increased the average daily gain and reduced the feed conversion ratio (P<0.001). The levels of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) were significantly increased following A. aeriphila treatment (P<0.05). Blood urea nitrogen and aspartate aminotransferase levels were decreased, whereas glucose and creatinine levels increased as a result of A. aeriphila treatment. Furthermore, the levels of serum antioxidant enzymes, including catalase (P<0.01), superoxide dismutase (P<0.001), and glutathione peroxidase (P<0.05), and total antioxidant capacity (P<0.05) were enhanced following A. aeriphila treatment. A. aeriphila treatment significantly increased the levels of serum immunoglobulin A (IgA) (P<0.05), IgG (P<0.01), IgM (P<0.05), interleukin-1 (IL-1) (P<0.05), IL-4 (P<0.05), and IL-10 (P<0.05). The broiler chickens in the A. aeriphila group had higher secretory IgA (SIgA) levels in the duodenum (P<0.01), jejunum (P<0.001), and cecum (P<0.001) than those in the control group. The messenger RNA (mRNA) relative expression levels of IL-10 (P<0.05) and IL-4 (P<0.001) in the intestinal mucosa of chickens were increased, while nuclear factor-κB (NF-κB) (P<0.001) expression was decreased in the A. aeriphila group compared to the control group. Phylum-level analysis revealed Firmicutes as the main phylum, followed by Bacteroidetes, in both groups. The data also found that Phascolarctobacterium and Barnesiella were increased in A. aeriphila-treated group. In conclusion, oral administration of A. aeriphila could improve the growth performance, serum antioxidant capacity, immune modulation, and gut health of broilers. Our findings may provide important information for the application of A. aeriphila in poultry production.
Animals
;
Swine
;
Antioxidants/pharmacology*
;
Chickens
;
Gastrointestinal Microbiome
;
Interleukin-10/pharmacology*
;
Interleukin-4/pharmacology*
;
NF-kappa B/metabolism*
;
Immunity
;
Diet/veterinary*
;
Animal Feed/analysis*
;
Dietary Supplements/analysis*
6.Formononetin improves cognitive behavior in aging rats with chronic unpredictable mild in hippocampal tissue stress by blocking the NF-κB pathway and inhibiting the release of inflammatory factors.
Chunhua ZHANG ; Lingyun HU ; Yun XIE ; Jing WEN ; Yadi CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):610-616
Objective To investigate the effects of formononetin (FMN) on cognitive behavior and inflammation in aging rats with chronic unpredictable mild stress (CUMS). Methods SD rats aged about 70 weeks were divided into healthy control group, CUMS model group, CUMS combined with 10 mg/kg FMN group, CUMS combined with 20 mg/kg FMN group and CUMS combined with 1.8 mg/kg fluoxetine hydrochloride (Flu) group. Except for healthy control group, other groups were stimulated with CUMS and administered drugs for 28 days. Sugar water preference, forced swimming experiment and open field experiment were used to observe the emotional behavior of rats in each group. HE staining was used to observe the pathological injury degree of brain equine area. The contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were detected by the kit. The apoptosis was tested by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) in the brain tissue. The levels of tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS) and interleukin 6 (IL-6) in peripheral blood were measured by ELISA. Western blot analysis was used to detect Bcl2, Bcl2 associated X protein (BAX), cleaved caspase-9, cleaved caspase-3, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in brain tissues. Results Compared with CUMS model group, sugar water consumption, open field activity time, open field travel distance and swimming activity time significantly increased in the CUMS combined with 20 mg/kg FMN group and the CUMS combined with 1.8 mg/kg Flu group. The number of new outarm entry increased significantly, while the number of initial arm entry and other arm entry decreased significantly. The pathological damage of brain equine area was alleviated, and the contents of 5-HT and 5-HIAA were significantly increased. The ratio of BAX/Bcl2 and the expression of cleaved caspase-9 and cleaved caspase-3 protein as well as the number of apoptotic cells were significantly decreased. The contents of TNF-α, iNOS and IL-6 were significantly decreased. The protein levels of TLR4, MyD88 and p-NF-κB p65 were significantly decreased. Conclusion FMN can inhibit the release of inflammatory factors by blocking NF-κB pathway and improve cognitive and behavioral ability of CUMS aged rats.
Rats
;
Animals
;
Horses
;
NF-kappa B/metabolism*
;
Signal Transduction
;
bcl-2-Associated X Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Myeloid Differentiation Factor 88
;
Hydroxyindoleacetic Acid/pharmacology*
;
Serotonin/metabolism*
;
Rats, Sprague-Dawley
;
Hippocampus/metabolism*
;
Cognition
7.Effects of interleukin-4-modified gold nanozymes on the full-thickness skin defects in diabetic mice.
Meng Yun YAO ; Ning ZHANG ; Qing ZHANG ; Yi Fei LU ; Yong HUANG ; Deng Feng HE ; Yun Xia CHEN ; Gao Xing LUO
Chinese Journal of Burns 2023;39(1):15-24
Objective: To investigate the effects and mechanism of interleukin-4-modified gold nanoparticle (IL-4-AuNP) on the wound healing of full-thickness skin defects in diabetic mice. Methods: Experimental research methods were adopted. Gold nanoparticle (AuNP) and IL-4-AuNP were synthesized by improving the methods described in published literature. The morphology of those two particles were photographed by transmission electron microscopy, and their particle sizes were calculated. The surface potential and hydration particle size of the two particles were detected by nanoparticle potentiometer and particle size analyzer, respectively. The clearance rate of IL-4-AuNP to hydrogen peroxide and superoxide anion was measured by hydrogen peroxide and superoxide anion kits, respectively. Mouse fibroblast line 3T3 cells were used and divided into the following groups by the random number table (the same below): blank control group, hydrogen peroxide alone group treated with hydrogen peroxide only, hydrogen peroxide+IL-4-AuNP group treated with IL-4-AuNP for 0.5 h and then treated with hydrogen peroxide. After 24 h of culture, the reactive oxygen species (ROS) levels of cells were detected by immunofluorescence method; cell count kit 8 was used to detect relative cell survival rate. The macrophage Raw264.7 mouse cells were then used and divided into blank control group and IL-4-AuNP group that treated with IL-4-AuNP. After 24 h of culture, the expression of arginase 1 (Arg-1) in cells was observed by immunofluorescence method. Twelve male BALB/c mice (mouse age, sex, and strain, the same below) aged 8 to 10 weeks were divided into IL-4-AuNP group and blank control group, treated accordingly. On the 16th day of treatment, whole blood samples were collected from mice for analysis of white blood cell count (WBC), red blood cell count (RBC), hemoglobin level, or platelet count and the level of aspartate aminotransferase (AST), alanine transaminase (ALT), urea, or creatinine. The inflammation, bleeding, or necrosis in the heart, liver, spleen, lung, and kidney tissue of mice were detected by hematoxylin-eosin (HE). Another 36 mice were selected to make diabetic model, and the full-thickness skin defect wounds were made on the back of these mice. The wounds were divided into blank control group, AuNP alone group, and IL-4-AuNP group, with 12 mice in each group, and treated accordingly. On the 0 (immediately), 4th, 9th, and 15th day of treatment, the wound condition was observed and the wound area was calculated. On the 9th day of treatment, HE staining was used to detect the length of neonatal epithelium and the thickness of granulation tissue in the wound. On the 15th day of treatment, immunofluorescence method was used to detect ROS level and the number of Arg-1 positive cells in the wound tissue. The number of samples was 6 in all cases. Data were statistically analyzed with independent sample t test, corrected t test, Tukey test, or Dunnett T3 test. Results: The size of prepared AuNP and IL-4-AuNP were uniform. The particle size, surface potential, and hydration particle size of AuNP and IL-4-AuNP were (13.0±2.1) and (13.9±2.5) nm, (-45.8±3.2) and (-20.3±2.2) mV, (14±3) and (16±4) nm, respectively. For IL-4-AuNP, the clearance rate to hydrogen peroxide and superoxide anion were (69±4)% and (52±5)%, respectively. After 24 h of culture, the ROS level of 3T3 in hydrogen peroxide alone group was significantly higher than that in blank control group (q=26.12, P<0.05); the ROS level of hydrogen peroxide+IL-4-AuNP group was significantly lower than that in hydrogen peroxide alone group (q=25.12, P<0.05) and close to that in blank control group (P>0.05). After 24 h of culture, the relative survival rate of 3T3 cells in hydrogen peroxide+IL-4-AuNP group was significantly higher than that in hydrogen peroxide alone group (t=51.44, P<0.05). After 24 h of culture, Arg-1 expression of Raw264.7 cells in IL-4-AuNP group was significantly higher than that in blank control group (t'=8.83, P<0.05).On the 16th day of treatment, there were no significant statistically differences in WBC, RBC, hemoglobin level, or platelet count and the level of AST, ALT, urea, or creatinine of mice between blank control group and IL-4-AuNP group (P>0.05). No obvious inflammation, bleeding or necrosis was observed in the heart, liver, spleen, lung, and kidney of important organs in IL-4-AuNP group, and no significant changes were observed compared with blank control group. On the 0 and 4th day of treatment, the wound area of diabetic mice in blank control group, AuNP alone group, and IL-4-AuNP group had no significant difference (P>0.05). On the 9th day of treatment, the wound areas both in AuNP alone group and IL-4-AuNP group were significantly smaller than that in blank control group (with q values of 9.45 and 14.87, respectively, P<0.05), the wound area in IL-4-AuNP group was significantly smaller than that in AuNP alone group (q=5.42, P<0.05). On the 15th day of treatment, the wound areas both in AuNP alone group and IL-4-AuNP group were significantly smaller than that in blank control group (with q values of 4.84 and 20.64, respectively, P<0.05), the wound area in IL-4-AuNP group was significantly smaller than that in AuNP alone group (q=15.80, P<0.05); moreover, inflammations such as redness and swelling were significantly reduced in IL-4-AuNP group compared with the other two groups. On the 9th day of treatment, compared with blank control group and AuNP alone group, the length of neonatal epithelium in the wound of diabetic mice in IL-4-AuNP group was significantly longer (all P<0.05), and the thickness of the granulation tissue in the wound was significantly increased (with q values of 11.33 and 9.65, respectively, all P<0.05). On the 15th day of treatment, compared with blank control group, ROS levels in wound tissue of diabetic mice in AuNP alone group and IL-4-AuNP group were significantly decreased (P<0.05). On the 15th day of treatment, the number of Arg-1 positive cells in the wounds of diabetic mice in IL-4-AuNP group was significantly more than that in blank control group and AuNP alone group, respectively (all P<0.05). Conclusions: IL-4-AuNP is safe in vivo, and can improve the oxidative microenvironment by removing ROS and induce macrophage polarization towards M2 phenotype, thus promote efficient diabetic wound healing and regeneration of full-thickness skin defects in diabetic mice.
Mice
;
Male
;
Animals
;
Interleukin-4
;
Gold/pharmacology*
;
Diabetes Mellitus, Experimental
;
Creatinine
;
Hydrogen Peroxide
;
Reactive Oxygen Species
;
Superoxides
;
Metal Nanoparticles
;
Soft Tissue Injuries
;
Antibodies
;
Inflammation
;
Necrosis
;
Hemoglobins
8.Acacetin protects rats from cerebral ischemia-reperfusion injury by regulating TLR4/NLRP3 signaling pathway.
Lan-Ming LIN ; Zheng-Yu SONG ; Jin HU
China Journal of Chinese Materia Medica 2023;48(22):6107-6114
This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1β, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1β, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
bcl-2-Associated X Protein
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Nimodipine/pharmacology*
;
Interleukin-6
;
Rats, Wistar
;
Signal Transduction
;
Infarction, Middle Cerebral Artery
;
Reperfusion Injury/prevention & control*
;
Superoxide Dismutase/metabolism*
9.Preparation of chitosan hydrochloride stabilized emulsion and its immunostimulatory effect.
Danyang WANG ; Jie WU ; Ning WANG
Chinese Journal of Biotechnology 2023;39(1):262-274
In order to increase the ability of oil-emulsion adjuvant to stimulate cellular immunity, chitosan hydrochloride with positive charge was selected to stabilize oil-in-water emulsion (CHE). In this paper, model antigen ovalbumin was selected to prepare vaccines with emulsion adjuvant, commercial adjuvant or no adjuvant. The emulsion was characterized by measuring the particle size, electric potential and antigen adsorption rate. BALB/c mice were immunized by intramuscular injection. Serum antibody levels, the numbers of IL-4-secreting cells in splenocytes, cytotoxic T lymphocyte (CTL) response, and the expression of central memory T cells were measured to evaluate the immunostimulatory effect. The results showed that chitosan hydrochloride can effectively stabilize the emulsion. The emulsion size is about 600 nm, and the antigen adsorption rate is more than 90%. After immunization, CHE could increase serum antibodies levels and increase IL-4 secretion. Expression of CTL surface activation molecules was also increased to stimulate CTL response further and to increase the CD44+CD62L+ in T cells proportion. CHE as adjuvant can stimulate humoral and cellular immunity more efficiently, and is expected to extend the duration of protection.
Animals
;
Mice
;
Chitosan
;
Interleukin-4
;
Emulsions
;
Immunization
;
Adjuvants, Immunologic/pharmacology*
;
Antigens
;
Mice, Inbred BALB C
10.Local and systemic inflammation triggers different outcomes of tumor growth related to infiltration of anti-tumor or pro-tumor macrophages.
Xinghan LIU ; Qi JIANG ; Sunan SHEN ; Yayi HOU
Chinese Medical Journal 2022;135(15):1821-1828
BACKGROUND:
Previous evidence suggests inflammation may be a double-edged sword with cancer-promoting and cancer suppressing function. In this study, we explore the impact of local and systemic inflammation on cancer growth.
METHODS:
Female BALB/C mice were subcutaneously implanted with foreign body (plastic plates) to build up a local inflammation and intraperitoneally injected with PolyIC or lipopolysaccharides (LPS) to build up a systemic inflammation, followed by subcutaneous injection of 5 × 10 5 colon cancer cells. Immunohistochemistry and enzyme linked immunosorbent assay were utilized to detect the Ki67 and interleukin (IL) 6, IL-1β, and monocyte chemoattractant protein-1 expression in the tumor tissues and serum, respectively. The distributions of immune cells and expression of toll-like receptors (TLRs) were evaluated by flow cytometry (FCM) and quantitative real time-polymerase chain reaction.
RESULTS:
The results showed that local inflammation induced by foreign body implantation suppressed tumor growth with decreased tumor weight ( P = 0.001), volume ( P = 0.004) and Ki67 index ( P < 0.001). Compared with the control group, myeloid-derived suppressive cells sharply decreased ( P = 0.040), while CD4 + T cells slightly increased in the tumor tissues of the group of foreign body-induced local inflammation ( P = 0.035). Moreover, the number of M1 macrophages ( P = 0.040) and expression of TLRs, especially TLR3 ( P < 0.001) and TLR4 ( P < 0.001), were significantly up-regulated in the foreign body group. Contrarily, tumor growth was significantly promoted in LPS or PolyIC-induced systemic inflammation ( P = 0.009 and 0.006). FCM results showed M1 type macrophages ( P = 0.017 and 0.006) and CD8 + T cells ( P = 0.031 and 0.023) were decreased, while M2 type macrophages ( P = 0.002 and 0.007) were significantly increased in tumor microenvironment of LPS or PolyIC-induced systemic inflammation group. In addition, the decreased expression of TLRs was detected in LPS or PolyIC group.
CONCLUSIONS
The foreign body-induced local inflammation inhibited tumor growth, while LPS or PolyIC- induced systemic inflammation promoted tumor growth. The results suggested that the different outcomes of tumor growth might be attributed to the infiltration of anti-tumor or pro-tumor immune cells, especially M1 or M2 type macrophages into tumor microenvironment.
Animals
;
Chemokine CCL2/metabolism*
;
Cytokines/metabolism*
;
Female
;
Foreign Bodies
;
Inflammation/metabolism*
;
Interleukin-6/metabolism*
;
Ki-67 Antigen/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Macrophages/metabolism*
;
Mice
;
Mice, Inbred BALB C
;
Neoplasms/metabolism*
;
Plastics/metabolism*
;
Toll-Like Receptor 3/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail