1.Effects of VX765 on osteoarthritis and chondrocyte inflammation in rats.
Wanran HUANG ; Junxue TU ; Aiqing QIAO ; Chujun HE
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):74-81
OBJECTIVE:
To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats.
METHODS:
Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 μmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor β 1 (TGF-β 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ.
RESULTS:
The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 μmol/L ( P<0.05), so 4 μmol/L and 8 μmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-β 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 μmol/L and 8 μmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression.
CONCLUSION
VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.
Rats
;
Animals
;
Chondrocytes/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
;
Collagen Type II/metabolism*
;
Interleukin-6
;
Lipopolysaccharides/pharmacology*
;
NF-E2-Related Factor 2/pharmacology*
;
Inflammation/drug therapy*
;
Osteoarthritis/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Dipeptides
;
para-Aminobenzoates
2.Angiotensin converting enzyme 2 alleviates infectious bronchitis virus-induced cellular inflammation by suppressing IL-6/JAK2/STAT3 signaling pathway.
Xiaoxia JI ; Huanhuan WANG ; Chang MA ; Zhiqiang LI ; Xinyu DU ; Yuanshu ZHANG
Chinese Journal of Biotechnology 2023;39(7):2669-2683
The goal of this study was to investigate the regulatory effect of angiotensin converting enzyme 2 (ACE2) on cellular inflammation caused by avian infectious bronchitis virus (IBV) and the underlying mechanism of such effect. Vero and DF-1 cells were used as test target to be exposed to recombinant IBV virus (IBV-3ab-Luc). Four different groups were tested: the control group, the infection group[IBV-3ab-Luc, MOI (multiplicity of infection)=1], the ACE2 overexpression group[IBV-3ab Luc+pcDNA3.1(+)-ACE2], and the ACE2-depleted group (IBV-3ab-Luc+siRNA-ACE2). After the cells in the infection group started to show cytopathic indicators, the overall protein and RNA in cell of each group were extracted. real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine the mRNA expression level of the IBV nucleoprotein (IBV-N), glycoprotein 130 (gp130) and cellular interleukin-6 (IL-6). Enzyme linked immunosorbent assay (ELISA) was used to determine the level of IL-6 in cell supernatant. Western blotting was performed to determine the level of ACE2 phosphorylation of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). We found that ACE2 was successfully overexpressed and depleted in both Vero and DF-1 cells. Secondly, cytopathic indicators were observed in infected Vero cells including rounding, detaching, clumping, and formation of syncytia. These indicators were alleviated in ACE2 overexpression group but exacerbated when ACE2 was depleted. Thirdly, in the infection group, capering with the control group, the expression level of IBV-N, gp130, IL-6 mRNA and increased significantly (P < 0.05), the IL-6 level was significant or extremely significant elevated in cell supernatant (P < 0.05 or P < 0.01); the expression of ACE2 decreased significantly (P < 0.05); protein phosphorylation level of JAK2 and STAT3 increased significantly (P < 0.05). Fourthly, comparing with the infected group, the level of IBV-N mRNA expression in the ACE2 overexpression group had no notable change (P > 0.05), but the expression of gp130 mRNA, IL-6 level and expression of mRNA were elevated (P < 0.05) and the protein phosphorylation level of JAK2 and STAT3 decreased significantly (P < 0.05). In the ACE2-depleted group, there was no notable change in IBV-N (P > 0.05), but the IL-6 level and expression of mRNA increased significantly (P < 0.05) and the phosphorylation level of JAK2 and STAT3 protein decreased slightly (P > 0.05). The results demonstrated for the first time that ACE2 did not affect the replication of IBV in DF-1 cell, but it did contribute to the prevention of the activation of the IL-6/JAK2/STAT3 signaling pathway, resulting in an alleviation of IBV-induced cellular inflammation in Vero and DF-1 cells.
Animals
;
Chlorocebus aethiops
;
Humans
;
Interleukin-6/genetics*
;
Janus Kinase 2/pharmacology*
;
Infectious bronchitis virus/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Angiotensin-Converting Enzyme 2/pharmacology*
;
Cytokine Receptor gp130/metabolism*
;
Vero Cells
;
Signal Transduction
;
Inflammation
;
RNA, Messenger
3.Effect and mechanism of Bovis Calculus on ulcerative colitis by inhibiting IL-17/IL-17RA/Act1 signaling pathway.
Jian-Mei YUAN ; Dan-Ni LU ; Jia-Jun WANG ; Zhuo XU ; Yong LI ; Mi-Hong REN ; Jin-Xiu LI ; Dao-Yin GONG ; Jian WANG
China Journal of Chinese Materia Medica 2023;48(9):2500-2511
This study aimed to elucidate the effect and underlying mechanism of Bovis Calculus in the treatment of ulcerative colitis(UC) through network pharmacological prediction and animal experimental verification. Databases such as BATMAN-TCM were used to mine the potential targets of Bovis Calculus against UC, and the pathway enrichment analysis was conducted. Seventy healthy C57BL/6J mice were randomly divided into a blank group, a model group, a solvent model(2% polysorbate 80) group, a salazosulfapyridine(SASP, 0.40 g·kg~(-1)) group, and high-, medium-, and low-dose Bovis Calculus Sativus(BCS, 0.20, 0.10, and 0.05 g·kg~(-1)) groups according to the body weight. The UC model was established in mice by drinking 3% dextran sulfate sodium(DSS) solution for 7 days. The mice in the groups with drug intervention received corresponding drugs for 3 days before modeling by gavage, and continued to take drugs for 7 days while modeling(continuous administration for 10 days). During the experiment, the body weight of mice was observed, and the disease activity index(DAI) score was recorded. After 7 days of modeling, the colon length was mea-sured, and the pathological changes in colon tissues were observed by hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), and interleukin-17(IL-17) in colon tissues of mice were detected by enzyme-linked immunosorbent assay(ELISA). The mRNA expression of IL-17, IL-17RA, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, CXCL2, and CXCL10 was evaluated by real-time polymerase chain reaction(RT-PCR). The protein expression of IL-17, IL-17RA, Act1, p-p38 MAPK, and p-ERK1/2 was investigated by Western blot. The results of network pharmacological prediction showed that Bovis Calculus might play a therapeutic role through the IL-17 signaling pathway and the TNF signaling pathway. As revealed by the results of animal experiments, on the 10th day of drug administration, compared with the solvent model group, all the BCS groups showed significantly increased body weight, decreased DAI score, increased colon length, improved pathological damage of colon mucosa, and significantly inhibited expression of TNF-α,IL-6,IL-1β, and IL-17 in colon tissues. The high-dose BCS(0.20 g·kg~(-1)) could significantly reduce the mRNA expression levels of IL-17, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, and CXCL2 in colon tissues of UC model mice, tend to down-regulate mRNA expression levels of IL-17RA and CXCL10, significantly inhibit the protein expression of IL-17RA,Act1,and p-ERK1/2, and tend to decrease the protein expression of IL-17 and p-p38 MAPK. This study, for the first time from the whole-organ-tissue-molecular level, reveals that BCS may reduce the expression of pro-inflammatory cytokines and chemokines by inhibiting the IL-17/IL-17RA/Act1 signaling pathway, thereby improving the inflammatory injury of colon tissues in DSS-induced UC mice and exerting the effect of clearing heat and removing toxins.
Mice
;
Animals
;
Colitis, Ulcerative/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Interleukin-17/pharmacology*
;
TNF Receptor-Associated Factor 2/pharmacology*
;
TNF Receptor-Associated Factor 5/metabolism*
;
Mice, Inbred C57BL
;
Signal Transduction
;
Colon
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
RNA, Messenger/metabolism*
;
Dextran Sulfate/metabolism*
;
Disease Models, Animal
4.Formononetin improves cognitive behavior in aging rats with chronic unpredictable mild in hippocampal tissue stress by blocking the NF-κB pathway and inhibiting the release of inflammatory factors.
Chunhua ZHANG ; Lingyun HU ; Yun XIE ; Jing WEN ; Yadi CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):610-616
Objective To investigate the effects of formononetin (FMN) on cognitive behavior and inflammation in aging rats with chronic unpredictable mild stress (CUMS). Methods SD rats aged about 70 weeks were divided into healthy control group, CUMS model group, CUMS combined with 10 mg/kg FMN group, CUMS combined with 20 mg/kg FMN group and CUMS combined with 1.8 mg/kg fluoxetine hydrochloride (Flu) group. Except for healthy control group, other groups were stimulated with CUMS and administered drugs for 28 days. Sugar water preference, forced swimming experiment and open field experiment were used to observe the emotional behavior of rats in each group. HE staining was used to observe the pathological injury degree of brain equine area. The contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were detected by the kit. The apoptosis was tested by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) in the brain tissue. The levels of tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS) and interleukin 6 (IL-6) in peripheral blood were measured by ELISA. Western blot analysis was used to detect Bcl2, Bcl2 associated X protein (BAX), cleaved caspase-9, cleaved caspase-3, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in brain tissues. Results Compared with CUMS model group, sugar water consumption, open field activity time, open field travel distance and swimming activity time significantly increased in the CUMS combined with 20 mg/kg FMN group and the CUMS combined with 1.8 mg/kg Flu group. The number of new outarm entry increased significantly, while the number of initial arm entry and other arm entry decreased significantly. The pathological damage of brain equine area was alleviated, and the contents of 5-HT and 5-HIAA were significantly increased. The ratio of BAX/Bcl2 and the expression of cleaved caspase-9 and cleaved caspase-3 protein as well as the number of apoptotic cells were significantly decreased. The contents of TNF-α, iNOS and IL-6 were significantly decreased. The protein levels of TLR4, MyD88 and p-NF-κB p65 were significantly decreased. Conclusion FMN can inhibit the release of inflammatory factors by blocking NF-κB pathway and improve cognitive and behavioral ability of CUMS aged rats.
Rats
;
Animals
;
Horses
;
NF-kappa B/metabolism*
;
Signal Transduction
;
bcl-2-Associated X Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Myeloid Differentiation Factor 88
;
Hydroxyindoleacetic Acid/pharmacology*
;
Serotonin/metabolism*
;
Rats, Sprague-Dawley
;
Hippocampus/metabolism*
;
Cognition
5.Asiatic acid improves insulin secretion of β cells in type 2 diabetes through TNF- α/Mfn2 pathway.
Lu LI ; Wei WANG ; Qiang XU ; Mingzhu HUANG
Journal of Zhejiang University. Medical sciences 2023;52(2):185-194
OBJECTIVES:
To investigate the effects and molecular mechanisms of asiatic acid on β-cell function in type 2 diabetes mellitus (T2DM).
METHODS:
The T2DM model was established by high fat diet and streptozotocin injection in ICR mice, and the effects of asiatic acid on glucose regulation were investigated in model mice. The islets were isolated from palmitic acid-treated diabetic mice. ELISA was used to detect the glucose-stimulated insulin secretion, tumor necrosis factor (TNF)-α and interleukin (IL)-6. ATP assay was applied to measure ATP production, and Western blotting was used to detect protein expression of mature β cell marker urocortin (Ucn) 3 and mitofusin (Mfn) 2. The regulatory effects of asiatic acid on glucose-stimulated insulin secretion (GSIS) and Ucn3 expression were also investigated after siRNA interference with Mfn2 or treatment with TNF-α.
RESULTS:
Asiatic acid with the dose of 25 mg·kg-1·d-1 had the best glycemic control in T2DM mice and improved the homeostasis model assessment β index. Asiatic acid increased the expression of Mfn2 and Ucn3 protein and improved the GSIS function of diabetic β cells in vitro and in vivo (both P<0.05). Moreover, it improved the ATP production of islets of T2DM mice in vitro (P<0.05). Interfering Mfn2 with siRNA blocked the up-regulation of Ucn3 and GSIS induced by asiatic acid. Asiatic acid inhibited islet TNF-α content and increased Mfn2 and Ucn3 protein expression inhibited by TNF-α.
CONCLUSIONS
Asiatic acid improves β cell insulin secretion function in T2DM mice by maintaining the β cell maturity, which may be related to the TNF-α/Mfn2 pathway.
Mice
;
Animals
;
Insulin Secretion
;
Diabetes Mellitus, Type 2/drug therapy*
;
Islets of Langerhans/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Insulin/therapeutic use*
;
Diabetes Mellitus, Experimental
;
Mice, Inbred ICR
;
Glucose/therapeutic use*
;
Interleukin-6/metabolism*
;
RNA, Small Interfering/pharmacology*
;
Adenosine Triphosphate
;
GTP Phosphohydrolases/therapeutic use*
6.Inhibitory Effect of Kaempferol on Proliferation of KG1a Cells and Its Mechanism.
Zhe CHEN ; Ling ZHANG ; Xiao-Fei YUAN ; Bing-Hua GAO ; Bin ZHANG ; Xia WANG
Journal of Experimental Hematology 2023;31(2):319-326
OBJECTIVE:
To investigate the effect of kaempferol on proliferation of acute myeloid leukemia (AML) KG1a cells and its mechanism.
METHODS:
Human AML KG1a cells in logarithmic growth stage were taken and set at 25, 50, 75 and 100 μg/ml kaempferol group, another normal control group (complete medium without drug) and solvent control group (add dimethyl sulfoxide) were also set. After 24 and 48 hours of intervention, the cell proliferation rate was detected by CCK-8 assay. In addition, interleukin-6 (IL-6) combined with kaempferol group (Plus 20 μg/l IL-6 and 75 μg/ml kaempferol) was set up, 48 hours after culture, the cell cycle and apoptosis of KG1a cells were detected by flow cytometry, the mitochondrial membrane potential (MMP) of KG1a cells was detected by MMP detection kit (JC-1 method), and the expression of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway related proteins in KG1a cells were detected by Western blot.
RESULTS:
The cell proliferation rate of 25, 50, 75 and 100 μg/ml kaempferol group decreased significantly (P<0.05), and with the increase of kaempferol dose (r24 h=-0.990, r48 h= -0.999), the cell proliferation rate decreased gradually (P<0.05). The inhibitory effect of 75 μg/ml kaempferol on cell proliferation reached half of effective dose after 48 hours of intervention. Compared with normal control group, the G0/G1 phase cell proportion and apoptosis rate of cells in 25, 50 and 75 μg/ml kaempferol group increased, while the S phase cell proportion, MMP, phosphorylated JAK2 (p-JAK2)/JAK2 and phosphorylated STAT3 (p-STAT3)/STAT3 protein expression decreased in a dose-dependent manner (r=0.998, 0.994, -0.996, -0.981, -0.997, -0.930). Compared with 75 μg/ml kaempferol group, the G0/G1 phase cell proportion and apoptosis rate of cells in IL-6 combined with kaempferol group decreased, while the S phase cell proportion, MMP, p-JAK2/JAK2 and p-STAT3/STAT3 protein expression increased significantly (P<0.05).
CONCLUSION
Kaempferol can inhibit KG1a cell proliferation and induce KG1a cell apoptosis, its mechanism may be related to the inhibition of JAK2/STAT3 signal pathway.
Humans
;
STAT3 Transcription Factor/metabolism*
;
Interleukin-6/metabolism*
;
Kaempferols/pharmacology*
;
Signal Transduction
;
Apoptosis
;
Janus Kinase 2
;
Cell Proliferation
;
Leukemia, Myeloid, Acute
7.Study on construction of c-Met specific CAR-T cells and its killing effect on non-small cell lung carcinoma.
Jing Ting MIN ; Lu ZHANG ; Chi Rong LONG ; Hong Lian FAN ; Zheng hong LI
Chinese Journal of Oncology 2023;45(4):322-329
Objective: To produce chimeric antigen receptor T cells (CAR-T) targeting human hepatocyte growth factor/c-Met (HGF/c-Met) protein and detect its cytotoxicity against non-small cell lung cancer (NSCLC) cells H1975 in vitro. Methods: The whole gene sequence of c-Met CAR containing c-Met single-chain fragment variable was synthesized and linked to lentiviral vector plasmid, plasmid electrophoresis was used to detect the correctness of target gene. HEK293 cells were transfected with plasmid and the concentrated solution of the virus particles was collected. c-Met CAR lentivirus was transfected into T cells to obtain second-generation c-Met CAR-T and the expression of CAR sequences was verified by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and western blot, and the positive rate and cell subtypes of c-Met CAR-T cells were detected by flow cytometry. The positive expression of c-Met protein in NSCLC cell line H1975 was verified by flow cytometry, and the negative expression of c-Met protein in ovarian cancer cell line A2780 was selected as the control. The cytotoxicity of c-Met CAR-T to H1975 was detected by lactate dehydrogenase (LDH) cytotoxicity assay at 1∶1, 5∶1, 10∶1 and 20∶1 of effector: target cell ratio (E∶T). Enzyme-linked immunosorbent assay (ELISA) was used to detect the release of cytokines such as TNF-α, IL-2 and IFN-γ from c-Met CAR-T co-cultured with H1975. Results: The size of band was consistent with that of designed c-Met CAR, suggesting that the c-Met CAR plasmid was successfully constructed. The results of gene sequencing were consistent with the original design sequence and lentivirus was successfully constructed. CAR molecules expression in T cells infected with lentivirus was detected by western blot and RT-qPCR, which showed c-Met CAR-T were successfully constructed. Flow cytometry results showed that the infection efficiency of c-Met CAR in T cells was over 38.4%, and the proportion of CD8(+) T cells was increased after lentivirus infection. The NSCLC cell line H1975 highly expressed c-Met while ovarian cancer cell line A2780 negatively expressed c-Met. LDH cytotoxicity assay indicated that the killing efficiency was positively correlated with the E∶T, and higher than that of control group, and the killing rate reached 51.12% when the E∶T was 20∶1. ELISA results showed that c-Met CAR-T cells released more IL-2, TNF-α and IFN-γ in target cell stimulation, but there was no statistical difference between c-Met CAR-T and T cells in the non-target group. Conclusions: Human NSCLC cell H1975 expresses high level of c-Met which can be used as a target for immunotherapy. CAR-T cells targeting c-Met have been successfully produced and have high killing effect on c-Met positive NSCLC cells in vitro.
Humans
;
Female
;
Receptors, Chimeric Antigen/genetics*
;
Carcinoma, Non-Small-Cell Lung
;
CD8-Positive T-Lymphocytes
;
Interleukin-2/pharmacology*
;
Tumor Necrosis Factor-alpha
;
Cell Line, Tumor
;
HEK293 Cells
;
Lung Neoplasms
;
Ovarian Neoplasms
;
Immunotherapy, Adoptive
8.Effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/PPARγ pathway in arrhythmic rats.
Wei-Ping HE ; Jin-Cheng LI ; Gao-Ming WANG
China Journal of Chinese Materia Medica 2023;48(1):220-225
This paper aimed to investigate the effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/peroxisome proliferator-activated receptor γ(PPARγ) pathway in arrhythmic rats. SD rats were randomly divided into a control group, a model group, a low-dose(20 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a medium-dose(40 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a high-dose(80 mg·kg~(-1)) group of total flavonoids of buckwheat flower and leaf, a propranolol hydrochloride(2 mg·kg~(-1)) group, with 12 rats in each group. Except the control group, rats in other groups were prepared as models of arrhythmia by sublingual injection of 1 mL·kg~(-1) of 0.002% aconitine. After grouping and intervention with drugs, the arrhythmia, myocardial cells apoptosis, myocardial tissue glutathione peroxidase(GSH-Px), catalase(CAT), malondialdehyde(MDA), serum interleukin-6(IL-6), prostaglandin E2(PGE2) levels, myocardial tissue apoptosis, and Wnt/β-catenin/PPARγ pathway-related protein expression of rats in each group were measured. As compared with the control group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA levels in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels increased significantly in the model group, whereas the GSH-Px and CAT levels, and Bcl-2 and PPARγ protein expression levels in myocardial tissues reduced significantly. As compared with the model group, the arrhythmia score, the number of ventricular premature beats, ventricular fibrillation duration, myocardial cell apoptosis rate, MDA leve in myocardial tissues, serum IL-6 and PGE2 levels, Bax in myocardial tissues, and Wnt1 and β-catenin protein expression levels reduced in the drug intervention groups, whereas the GSH-Px and CAT levels and Bcl-2 and PPARγ protein expression levels in myocardial tissues increased. The groups of total flavonoids of buckwheat flower and leaf were in a dose-dependent manner. There was no significant difference in the levels of each index in rats between the propranolol hydrochloride group and the high-dose group of total flavonoids of buckwheat flower and leaf. The total flavonoids of buckwheat flower and leaf inhibit the activation of Wnt/β-catenin pathway, up-regulate the expression of PPARγ, reduce oxidative stress and inflammatory damage in myocardial tissues of arrhythmic rats, reduce myocardial cell apoptosis, and improve the symptoms of arrhythmia in rats.
Rats
;
Animals
;
PPAR gamma/metabolism*
;
Fagopyrum/genetics*
;
Rats, Sprague-Dawley
;
bcl-2-Associated X Protein
;
beta Catenin/metabolism*
;
Interleukin-6
;
Flavonoids/pharmacology*
;
Propranolol/pharmacology*
;
Ventricular Fibrillation
;
Dinoprostone
;
Wnt Signaling Pathway
;
Plant Leaves/metabolism*
;
Flowers/metabolism*
;
Apoptosis
;
Cardiac Complexes, Premature
9.Acacetin protects rats from cerebral ischemia-reperfusion injury by regulating TLR4/NLRP3 signaling pathway.
Lan-Ming LIN ; Zheng-Yu SONG ; Jin HU
China Journal of Chinese Materia Medica 2023;48(22):6107-6114
This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1β, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1β, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
bcl-2-Associated X Protein
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Nimodipine/pharmacology*
;
Interleukin-6
;
Rats, Wistar
;
Signal Transduction
;
Infarction, Middle Cerebral Artery
;
Reperfusion Injury/prevention & control*
;
Superoxide Dismutase/metabolism*
10.Effect and mechanism of Poria cocos polysaccharides on myocardial cell apoptosis in rats with myocardial ischemia-reperfusion injury by regulating Rho-ROCK signaling pathway.
Jun XIE ; Yuan-Yuan WANG ; Ju-Xin LI ; Feng-Min GAO
China Journal of Chinese Materia Medica 2023;48(23):6434-6441
This study aimed to investigate the effect and underlying mechanism of Poria cocos polysaccharides(PCP) on myocardial cell apoptosis in the rat model of myocardial ischemia-reperfusion injury(MI/RI). Male SPF-grade SD rats were randomly divided into a sham group(saline), a model group(saline), low-and high-dose PCP groups(100 and 200 mg·kg~(-1)), and a fasudil group(10 mg·kg~(-1)), with 16 rats in each group. Except for the sham group, the other four groups underwent left anterior descending coronary artery ligation for 30 min followed by reperfusion for 2 h to establish the MI/RI model. The myocardial infarct area was assessed by TTC staining. Histological changes were observed through HE staining. Myocardial cell apoptosis was evaluated using TUNEL staining. Serum lactate dehydrogenase(LDH), creatine kinase MB(CK-MB), interleukin-1β(IL-1β) and IL-18 levels, myocardial superoxide dismutase(SOD) activity and malondialdehyde(MDA) levels were detected by ELISA. Protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2 associated X protein(Bax), cleaved caspase-3, Ras homolog gene A(RhoA), myosin phosphatase target subunit 1(MYPT-1), phosphorylated MYPT-1(p-MYPT-1), and Rho-associated coiled-coil forming kinase 1(ROCK 1) were measured by Western blot. Pathological staining of myocardial tissue revealed that in the model group, there was focal necrosis of myocardial tissue, myocardial cell swelling, unclear boundaries, and neutrophil infiltration. These pathological changes were alleviated in the low-and high-dose PCP groups and the fasudil group. Compared with the model group, the low-and high-dose PCP groups and the fasudil group showed significantly reduced myocardial infarct area and myocardial cell apoptosis rate. Compared with the sham group, the model group exhibited elevated serum LDH, CK-MB, IL-1β and IL-18 levels, increased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and decreased myocardial SOD levels and Bcl-2 protein expression. Compared with the model group, the PCP groups and the fasudil group showed lowered serum LDH, CK-MB, IL-1β and IL-18 levels, decreased MDA levels, relative protein expression of Bax, cleaved caspase-3, RhoA, ROCK1 and p-MYPT-1, and increased myocardial SOD levels and Bcl-2 protein expression. PCP exhibited a certain preventive effect on myocardial tissue pathological damage and myocardial cell apoptosis in MI/RI rats, possibly related to the inhibition of the Rho-ROCK signaling pathway activation, thereby reducing oxidative stress and inflammatory responses.
Rats
;
Male
;
Animals
;
Myocardial Reperfusion Injury/drug therapy*
;
bcl-2-Associated X Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 3/metabolism*
;
Interleukin-18
;
Wolfiporia
;
Signal Transduction
;
Myocardial Infarction/drug therapy*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Creatine Kinase, MB Form
;
Apoptosis
;
Polysaccharides/pharmacology*
;
Superoxide Dismutase/metabolism*
;
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives*

Result Analysis
Print
Save
E-mail