1.Influence of long-term biologic therapy on metabolic biochemical parameters in moderate to severe plaque psoriasis.
Xiangxian LIU ; Yi LIN ; Jinzhu GUO
Journal of Peking University(Health Sciences) 2025;57(5):934-940
OBJECTIVE:
To assess the impact of long-term biologic therapy on metabolic biochemical parameters in moderate to severe plaque psoriasis patients.
METHODS:
The study included patients over 18 years old who had been treated by biological agents for at least 24 weeks for moderate to severe plaque psoriasis from Novermber 2015 to January 2024. According to the biological agents the patients used, they were divided into three groups: interleukin-17 (IL-17) inhibitor group, IL-23 and IL-12/23 inhibitor group and tumor necrosis factor-α (TNF-α) inhibitor group. The metabolic biochemical parameters of each group were evaluated and compared before and after the administration of the biologic therapies.
RESULTS:
A total of 174 patients with moderate to severe plaque psoriasis were included in the long-term treatment with biologics, including 127 males (73.00%), 47 females (27.00%), with a median age of 38.00 (31.50, 49.00) years and a median duration of psoriasis of 12.00 (10.00, 20.00) years. The median duration of biologic treatment was 61.00 (49.00, 96.25) weeks, ranging from 26 to 301 weeks. There were 101 patients in the IL-17 inhibitor group, 38 patients in the IL-23 and IL-12/23 inhibitor group, and 35 patients in the TNF-α inhibitor group. After long-term treatment with IL-17 inhibitors, no statistically significant changes were observed in body weight, body mass index (BMI), alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting glucose (GLU), total cholesterol (TC), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C) compared with baseline measurements (P>0.05). However, low-density lipoprotein cholesterol (LDL-C) levels were significantly reduced [(2.90±0.75) mmol/L vs. (3.05±0.79) mmol/L, t=-2.100, P=0.038], while uric acid (UA) levels showed a significant increase [(401.13±99.13) μmol/L vs. (364.94±91.11) μmol/L, t=5.215, P < 0.001]. The group with normal UA levels before treatment showed a significant increase after long-term application of biological agents compared with before treatment [(370.69± 89.59) μmol/L vs. (324.66±64.50) μmol/L, t=5.856, P < 0.001]. Following long-term application of IL-23 and IL-12/23 inhibitors, no statistically significant differences were observed in body weight, BMI, ALT, AST, GLU, TC, TG, HDL-C and UA levels when compared with baseline measurements (P> 0.05). However, LDL-C levels exhibited a significant reduction from baseline [(2.85±0.74) mmol/L vs. (3.12±0.68) mmol/L, t=-2.082, P=0.045]. After long-term treatment with TNF-α inhibitor, there were no significant differences in body weight, BMI, ALT, AST, GLU, TC, TG, HDL-C, LDL-C and UA compared with baseline measurements (P>0.05).
CONCLUSION
Long-term application of IL-17 inhibitors in moderate to severe plaque psoriasis patients may result in elevated uric acid levels, particularly in patients with normal uric acid levels before treatment. The long-term use of IL-17 inhibitors, IL-23 inhibitors or IL-12/23 inhibitors might reduce LDL-C levels.
Humans
;
Psoriasis/blood*
;
Male
;
Female
;
Adult
;
Middle Aged
;
Interleukin-17/antagonists & inhibitors*
;
Interleukin-23/antagonists & inhibitors*
;
Tumor Necrosis Factor-alpha/antagonists & inhibitors*
;
Interleukin-12/antagonists & inhibitors*
;
Biological Therapy
;
Biological Products/therapeutic use*
;
Triglycerides/blood*
;
Cholesterol, LDL/blood*
;
Cholesterol, HDL/blood*
2.Modified Hu-Lu-Ba-Wan Alleviates Early-Stage Diabetic Kidney Disease via Inhibiting Interleukin-17A in Mice.
Min-Min GONG ; Meng-di ZHU ; Wen-Bin WU ; Hui DONG ; Fan WU ; Jing GONG ; Fu-Er LU
Chinese journal of integrative medicine 2025;31(6):506-517
OBJECTIVE:
To identify the underlying molecular mechanism of Modified Hu-Lu-Ba-Wan (MHW) in alleviating renal lesions in mice with diabetic kidney disease (DKD).
METHODS:
The db/db mice were divided into model group and MHW group according to a random number table, while db/m mice were settled as the control group (n=8 per group). The control and model groups were gavaged daily with distilled water [10 mL/(kg·d)], and the MHW group was treated with MHW [17.8 g/(kg·d)] for 6 weeks. After MHW administration for 6 weeks, indicators associated with glucolipid metabolism and urinary albumin were tested. Podocytes were observed by transmission electron microscopy. Kidney transcriptomics was performed after confirming therapeutic effects of MHW on DKD mice. The relevant target of MHW' effect in DKD was further determined by enzyme-linked immunosorbent assay, Western blot analysis, immunohistochemistry, and immunofluorescence staining.
RESULTS:
Compared with the model group, MHW improved glucose and lipid metabolism (P<0.05), and reduced lipid deposition in the kidney. Meanwhile, MHW reduced the excretion of urinary albumin (P<0.05) and ameliorated renal damage. Transcriptomic analysis revealed that the inflammation response, particularly the interleukin-17 (IL-17) signaling pathway, may be responsible for the effect of MHW on DKD. Furtherly, our results found that MHW inhibited IL-17A and alleviated early fibrosis in the diabetic kidney.
CONCLUSION
MHW ameliorated renal damage in DKD via inhibiting IL-17A, suggesting a potential strategy for DKD therapy.
Animals
;
Diabetic Nephropathies/genetics*
;
Interleukin-17/antagonists & inhibitors*
;
Drugs, Chinese Herbal/therapeutic use*
;
Male
;
Kidney/ultrastructure*
;
Podocytes/metabolism*
;
Mice
;
Albuminuria
;
Lipid Metabolism/drug effects*
;
Mice, Inbred C57BL
3.Interleukin-17 promotes mouse hepatoma cell proliferation by antagonizing interferon-γ.
Jie LI ; Kun YAN ; Yi YANG ; Hua LI ; Zhidong WANG ; Xin XU
Journal of Southern Medical University 2019;39(1):1-5
OBJECTIVE:
To investigate the interaction between interleukin-17 (IL-17) and interferon-γ (IFN-γ) and how their interaction affects the growth of mouse hepatoma Hepa1-6 cells.
METHODS:
Hepa1-6 cells treated with IL-17 and IFN-γ either alone or in combination were examined for changes in cell proliferation using MTT assay and in cell cycle distribution using flow cytometry. Western blotting was used to detect the protein expression levels of proliferating cell nuclear antigen (PCNA), cyclin D1, P21 and P16 and the phosphorylation of p38MAPK, ERK1/2 and Stat1 in the cells.
RESULTS:
Compared with control group, IFN-γ treatment obviously inhibited the growth and proliferation of Hepa1-6 cells, induced cell cycle arrest at G0/G1 phase, reduced the protein expression of PCNA and cyclin D1, and increased the protein expression of P21. IL-17 alone had no effect on the growth of Hepa1-6 cells. In the combined treatment, IL-17 significantly antagonized the effects of IFN-γ. Compared with those treated with IFN-γ alone, the cells with the combined treatment showed significantly decreased G0/G1 cell population, increased the protein expressions of PCNA and cyclin D1, and decreased the protein expression of P21. IL-17 significantly inhibited IFN-γ-induced phosphorylation of p38MAPK and ERK1/2 without affecting the phosphorylation of Stat1.
CONCLUSIONS
IL-17 obviously reverses the antitumor effects of IFN-γ to promote the proliferation of mouse hepatoma cells and accelerate the development of hepatocellular carcinoma.
Animals
;
Carcinoma, Hepatocellular
;
metabolism
;
pathology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cyclin D1
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
metabolism
;
Interferon-gamma
;
antagonists & inhibitors
;
Interleukin-17
;
pharmacology
;
Liver Neoplasms
;
metabolism
;
pathology
;
Mice
;
Neoplasm Proteins
;
metabolism
;
Proliferating Cell Nuclear Antigen
;
metabolism
4.IL-25 blockade inhibits metastasis in breast cancer.
Zhujun JIANG ; Jingtao CHEN ; Xuemei DU ; Hang CHENG ; Xiaohu WANG ; Chen DONG
Protein & Cell 2017;8(3):191-201
Metastasis is the leading cause of death in breast cancer patients. However, the mechanisms underlying metastasis are not well understood and there is no effective treatment in the clinic. Here, we demonstrate that in MMTV-PyMT, a highly malignant spontaneous breast tumor model, IL-25 (also called IL-17E) was expressed by tumor-infiltrating CD4 T cells and macrophages. An IL-25 neutralization antibody, while not affecting primary tumor growth, substantially reduced lung metastasis. Inhibition of IL-25 resulted in decreased type 2 T cells and macrophages in the primary tumor microenvironments, both reported to enhance breast tumor invasion and subsequent metastasis to the lung. Taken together, our data suggest IL-25 blockade as a novel treatment for metastatic breast tumor.
Animals
;
Antibodies, Neoplasm
;
pharmacology
;
Antibodies, Neutralizing
;
pharmacology
;
Breast Neoplasms
;
drug therapy
;
genetics
;
immunology
;
CD4-Positive T-Lymphocytes
;
immunology
;
pathology
;
Female
;
Humans
;
Interleukin-17
;
antagonists & inhibitors
;
genetics
;
immunology
;
Interleukins
;
antagonists & inhibitors
;
genetics
;
immunology
;
Macrophages
;
immunology
;
pathology
;
Mammary Neoplasms, Animal
;
drug therapy
;
genetics
;
immunology
;
Mice
;
Neoplasm Metastasis
;
Tumor Microenvironment
;
drug effects
;
genetics
;
immunology
5.Study on biomarker of Tripterygium wilfordii in treatment of rheumatoid arthritis based on PK/PD.
Shi-jia LIU ; Guo-liang DAI ; Bing-ting SUN ; Chang-yin LI ; Lei WU ; Ma SHI-TANG ; Wen-zheng JU ; Heng-shan TAN ; Hai-yan FU
China Journal of Chinese Materia Medica 2015;40(2):334-338
To observe the serum samples and the anti-inflammatory effect of Tripterygium wilfordii in treating RA by using the pharmacokinetic-pharmacodynamic model, make a correlation analysis on concentration-time and effect-time curves, and explore RORγt, IL-17, STAT3, IL-6 mRNA transcriptional levels in rats by PCR. Methotrexate, tripterine and high-dose T. wilfordii could down-regulate RORγt, IL-17, STAT3, IL-6 mRNA transcriptional levels in AA rat lymph nodes. The study on PK-PD model showed correlations between inflammatory factors and blood concentration of T. wilfordii. T. wilfordii and its main active constituent tripterine could show the inflammatory effect and treat RA by inhibiting IL-17 cytokine.
Animals
;
Arthritis, Rheumatoid
;
drug therapy
;
immunology
;
Biomarkers
;
Female
;
Interleukin-17
;
antagonists & inhibitors
;
genetics
;
Interleukin-6
;
genetics
;
Phytotherapy
;
Rats
;
Rats, Sprague-Dawley
;
Tripterygium
;
Triterpenes
;
pharmacokinetics
;
pharmacology
6.IL-17 Induces MPTP opening through ERK2 and P53 signaling pathway in human platelets.
Jing YUAN ; Pei-wu DING ; Miao YU ; Shao-shao ZHANG ; Qi LONG ; Xiang CHENG ; Yu-hua LIAO ; Min WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):679-683
The opening of mitochondrial permeability transition pore (MPTP) plays a critical role in platelet activation. However, the potential trigger of the MPTP opening in platelet activation remains unknown. Inflammation is the crucial trigger of platelet activation. In this study, we aimed to explore whether and how the important inflammatory cytokine IL-17 is associated with MPTP opening in platelets activation by using MPTP inhibitor cyclosporine-A (CsA). The mitochondrial membrane potential (ΔΨm) was detected to reflect MPTP opening levels. And the platelet aggregation, activation, and the primary signaling pathway were also tested. The results showed that the MPTP opening levels were increased and Δψm reduced in platelets administrated with IL-17. Moreover, the levels of aggregation, CD62P, PAC-1, P53 and the phosphorylation of ERK2 were enhanced along with the MPTP opening in platelets pre-stimulated with IL-17. However, CsA attenuated these effects triggered by IL-17. It was suggested that IL-17 could induce MPTP opening through ERK2 and P53 signaling pathway in platelet activation and aggregation.
Blood Platelets
;
cytology
;
drug effects
;
metabolism
;
Cell Separation
;
Cyclosporine
;
pharmacology
;
Dual Specificity Phosphatase 2
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Humans
;
Interleukin-17
;
metabolism
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondria
;
drug effects
;
metabolism
;
Mitochondrial Membrane Transport Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Mitogen-Activated Protein Kinase 1
;
genetics
;
metabolism
;
P-Selectin
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Platelet Activation
;
drug effects
;
Platelet Aggregation
;
drug effects
;
Primary Cell Culture
;
Signal Transduction
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
7.Blocking extracellular HMGB1 activity protects against doxorubicin induced cardiac injury in mice.
Yong-Gang MA ; Xiao-Wei ZHANG ; Hua-Yan BAO ; Shi-Shan YU ; Zhuo-Wei HU ; Wei SUN
Acta Pharmaceutica Sinica 2012;47(11):1489-1495
This study aims to investigate the preventive role and potential mechanisms of blocking extracellular HMGB1 function on doxorubicin induced cardiac injury. Mice were treated with HMGB1 blocker glycyrrhizin 1 h before and one time every day (intraperitoneal, 10 mg per mouse) after doxorubicin injection, and sacrificed on the day 14 after doxorubicin challenge. Cardiac function was evaluated by echocardiography and hemodynamic measurement. Myocardial inflammation and collagen deposition were analyzed by immunohistochemistry and picrosirius red staining. The interaction of HMGB1 and TLR2 was assessed by co-immunoprecipitation and confocal microscopy. The protein contents of HMGB1, MyD88, p65NF-kappaB and phospho-p65NF-kappaB were measured by Immunoblot. Compared with mice treated with saline, doxorubicin treatment led to an upregulation in HMGB1 expression. Blocking HMGB1 activity with glycyrrhizin protected mice against cardiac dysfunction, inflammatory response, and cardiac fibrosis induced by doxorubicin challenge. Glycyrrhizin inhibited the interaction of HMGB1 and TLR2, and blocked the downstream signaling of TLR2. In conclusion, blocking HMGB1 protected against doxorubicin induced cardiac injury by inhibiting TLR2 signaling pathway.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Collagen
;
metabolism
;
Doxorubicin
;
Drug Interactions
;
Fibrosis
;
Glycyrrhizic Acid
;
pharmacology
;
HMGB1 Protein
;
antagonists & inhibitors
;
metabolism
;
Heart Diseases
;
chemically induced
;
metabolism
;
pathology
;
Immunoprecipitation
;
Interleukin-17
;
metabolism
;
Male
;
Mice
;
Mice, Inbred ICR
;
Myocardium
;
metabolism
;
pathology
;
Random Allocation
;
Signal Transduction
;
drug effects
;
Toll-Like Receptor 2
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
;
Up-Regulation
8.Blocking IL-17A protects against lung injury-induced pulmonary fibrosis through promoting the activation of p50NF-kappaB.
Su MI ; Zhe LI ; Hong LIU ; Zhuo-Wei HU ; Fang HUA
Acta Pharmaceutica Sinica 2012;47(6):739-744
This study is to determine the preventive effect and mechanism of targeting IL-17A on pulmonary inflammation and fibrosis after acute lung injury. Mice were treated with anti-IL-17A antibody on the day 7 and sacrificed on the day 14 after bleomycin lung injury. The pulmonary inflammatory status and the deposition of collagen were measured by HE and Sirius stains staining. The contents of hydroxyproline and collagen were measured by using commercial kits. The survival rate of mice was calculated by Kaplan-Meier methods. The inflammatory cytokines in bronchoalveolar lavage fluid were measured by ELISA and the expressions of inflammation-related molecules were detected by Western blotting assay. Targeting of IL-17A could prevent the development of lung inflammation, decrease collagen deposition and the contents of hydroxyproline, and protect against the development of pulmonary fibrosis, which together led to an increase in the animal survival. Moreover, blocking IL-17A decreased the expression ofpro-fibrotic cytokines such as IL-17A, TGF-beta1 and IL-13; increased the expression of anti-fibrotic or anti-inflammatory factors such as IFN-gamma, COX-2, 5-LOX, 15-LOX. Indeed, IL-17A antagonism suppressed the activation of pro-inflammatory p65NF-kappaB but enhanced the activation of pro-resolving p50NF-kappaB. In conclusion, that blockade of IL-17A prevents the development of pulmonary fibrosis from acute lung injury, is because blocking IL-17A may prevent acute inflammation converting to chronic inflammation.
Acute Lung Injury
;
chemically induced
;
complications
;
Animals
;
Bleomycin
;
Collagen
;
metabolism
;
Hydroxyproline
;
metabolism
;
Interleukin-13
;
metabolism
;
Interleukin-17
;
antagonists & inhibitors
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NF-kappa B p50 Subunit
;
metabolism
;
Pneumonia
;
etiology
;
metabolism
;
Pulmonary Fibrosis
;
etiology
;
metabolism
;
prevention & control
;
Random Allocation
;
Transcription Factor RelA
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
;
Up-Regulation

Result Analysis
Print
Save
E-mail