1.Effects of electroacupuncture at pterygopalatine region on NLRP3-mediated pyroptosis and inflammatory factors in allergic rhinitis rats.
Haiyang LV ; Meihui TIAN ; Shuyi SHE ; Yucheng LIU ; Lei SUN ; Wu SONG ; Yong TANG
Chinese Acupuncture & Moxibustion 2025;45(3):345-350
OBJECTIVE:
To observe the effects of electroacupuncture at the pterygopalatine region on nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-mediated pyroptosis and inflammatory factors in rats with allergic rhinitis (AR).
METHODS:
Twenty-four SD rats were randomly divided into a blank group, a model group, an acupuncture group and an electroacupuncture group, 6 rats in each group. Except for the blank group, OVA-induced AR model was established in the remaining groups. In the electroacupuncture group, the rats were treated with electroacupuncture at the bilateral pterygopalatine region, with disperse-dense wave, in frequency of 2 Hz/100 Hz and current of 0.5-1 mA, 15 min each time, once every other day, for 3 times. In the acupuncture group, the rats were treated with acupuncture at bilateral pterygopalatine region simply, without electrical stimulation. The rhinitis symptom score was observed, the pathomorphology of the nasal mucosa was observed by HE staining; the serum levels of OVA-specific immunoglobulin E (OVA-sIgE), interleukin (IL)-4, IL-6 and IL-1β were detected by ELISA; the mRNA expression of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1) and IL-18 in the nasal mucosa was detected by real-time PCR; the protein expression of NLRP3, ASC, caspase-1 and IL-18 in the nasal mucosa was detected by Western blot.
RESULTS:
Compared with the blank group, in the model group, the rhinitis symptom score was increased (P<0.01), the serum levels of OVA-sIgE, IL-4, IL-6 and IL-1β were increased (P<0.05), the nasal mucosa showed pathomorphology of inflammatory infiltration; the mRNA and protein expression of NLRP3, ASC, caspase-1 and IL-18 in the nasal mucosa was increased (P<0.05). Compared with the model group, in the electroacupuncture group, the rhinitis symptom score was reduced (P<0.01), the pathology of the nasal mucosa was improved; the serum levels of OVA-sIgE, IL-4, IL-6 and IL-1β were decreased (P<0.05); the mRNA and protein expression of NLRP3, ASC, caspase-1 and IL-18 in the nasal mucosa was decreased (P<0.05).
CONCLUSION
Electroacupuncture at the pterygopalatine region can exerting the anti-inflammatory effect by inhibiting NLRP3-mediated pyroptosis and inflammatory factor imbalance, thus alleviate rhinitis symptoms in AR rats.
Animals
;
Electroacupuncture
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Rats
;
Rats, Sprague-Dawley
;
Rhinitis, Allergic/physiopathology*
;
Pyroptosis
;
Male
;
Acupuncture Points
;
Humans
;
Female
;
Interleukin-1beta/genetics*
;
Interleukin-18/immunology*
;
Interleukin-6/genetics*
;
Caspase 1/immunology*
2.High mobility group protein B1(HMGB1) promotes myeloid dendritic cell maturation and increases Th17 cell/Treg cell ratio in patients with immune primary thrombocytopenia.
Qinzhi LI ; Dongsheng DUAN ; Xiujuan WANG ; Mingling SUN ; Ying LIU ; Xinyou WANG ; Lei WANG ; Wenxia FAN ; Mengting SONG ; Xinhong GUO
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):45-50
Objective This study investigated the regulatory effect of high mobility group protein B1 (HMGB1) in the peripheral blood of patients with primary immune thrombocytopenia (ITP) on myeloid dendritic cells (mDC) and Th17/regulatory T cells (Treg) balance. Methods The study enrolled 30 newly diagnosed ITP patients and 30 healthy controls.Flow cytometry was used to measure the proportion of mDC, Th17, and Treg cells in the peripheral blood of ITP patients and healthy controls. ELISA was conducted to quantify the serum levels of HMGB1, interleukin 6 (IL-6), IL-23, IL-17, and transforming growth factor β(TGF-β). The mRNA levels of retinoic acid-related orphan receptor γt(RORγt) and forehead box P3(FOXP3) were detected by real-time PCR. The correlation between the abovementioned cells, cytokines, and platelet count was assessed using Pearson linear correlation analysis. Results The proportion of Th17 cells and the expression levels of HMGB1, IL-6, IL-23, IL-17 and the level of RORγt mRNA in the peripheral blood of ITP patients were higher than those in healthy controls. However, the Treg cell proportion and TGF-β level were lower in ITP patients than those in healthy controls. In patients with ITP, the proportion of mDC and the level of FOXP3 mRNA did not show significant changes. The proportion of mDC cells was significantly correlated with the expression of IL-6 and IL-23. Moreover, the expression of HMGB1 showed a significant correlation with the expression of mDC, IL-6, IL-23, RORγt mRNA, and IL-17. Notably, both the proportion of mDC cells and the expression of HMGB1 were negatively correlated with platelet count. Conclusion The high expression of HMGB1 in peripheral blood of ITP patients may induce Th17/Treg imbalance by promoting the maturation of mDC and affecting the secretion of cytokines, thereby potentially playing a role in the immunological mechanism of ITP.
Humans
;
Th17 Cells/cytology*
;
HMGB1 Protein/genetics*
;
T-Lymphocytes, Regulatory/cytology*
;
Female
;
Male
;
Dendritic Cells/metabolism*
;
Adult
;
Middle Aged
;
Purpura, Thrombocytopenic, Idiopathic/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 3/genetics*
;
Young Adult
;
Interleukin-23/blood*
;
Interleukin-17/blood*
;
Interleukin-6/blood*
;
Forkhead Transcription Factors/genetics*
;
Myeloid Cells/cytology*
;
Aged
3.miR-582-5p regulates DUSP1 to modulate Mycobacterium tuberculosis infection in macrophages.
Yanming SUN ; Fengxia LIU ; Tingting CHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):406-412
Objective To explore the effect of miR-582-5p on Mycobacterium tuberculosis (Mtb)-infected macrophages by regulating dual specificity phosphatase 1 (DUSP1). Methods THP-1 macrophages were divided into six groups: control group, Mtb group, inhibitor-NC group, miR-582-5p inhibitor group, miR-582-5p inhibitor+si-NC group, and miR-582-5p inhibitor+si-DUSP1 group. QRT-PCR was applied to detect the gene expression of miR-582-5p and DUSP1 in cells. ELISA kit was used to detect the levels of interferon γ (IFN-γ), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β). CCK-8 method was applied to detect cell proliferation. Flow cytometry was applied to detect cell apoptosis rate. Western blot analysis was used to measure the protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X (BAX), and cleaved-caspase 3 (c-caspase-3) in cells. In addition, the target relationship between miR-582-5p and DUSP1 was verified. Results Compared with the control group, the expression of miR-582-5p, levels of IFN-γ, IL-6, TNF-α, IL-1β, bacterial load and OD450 values (24 h, 48 h), and the protein expression of Bcl2 in macrophages were higher in the Mtb group, while the mRNA expression of DUSP1, apoptosis rate, and the protein expression levels of c-caspase-3, BAX and DUSP1 were lower. Compared with the Mtb group and the inhibitor-NC group, the above-mentioned indicators in the miR-582-5p inhibitor group were partially reversed. Down-regulation of DUSP1 expression partially reversed the inhibitory effect of down-regulation of miR-582-5p expression on Mtb-infected macrophages. Conclusion Inhibiting the expression of miR-582-5p can up-regulate DUSP1, thereby inhibiting the proliferation and inflammatory response of Mtb-infected macrophages and promoting cell apoptosis.
Humans
;
Macrophages/metabolism*
;
Dual Specificity Phosphatase 1/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Tuberculosis/microbiology*
;
Apoptosis/genetics*
;
THP-1 Cells
;
Cell Proliferation/genetics*
;
Interferon-gamma/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
4.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
5.FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway.
Yan-Jun ZHANG ; Fei-Fei XIAO ; Xiao-Hua LI ; Shen-Hua TANG ; Yi SANG ; Chao-Yue LIU ; Jian-Chang LI
Chinese Journal of Contemporary Pediatrics 2025;27(5):601-608
OBJECTIVES:
To investigate the role and mechanism of fibroblast growth factor (FGF) 19 in inflammation-induced injury of vascular endothelial cells caused by high glucose (HG).
METHODS:
Human umbilical vein endothelial cells (HUVECs) were randomly divided into four groups: control, HG, FGF19, and HG+FGF19 (n=3 each). The effect of different concentrations of glucose and/or FGF19 on HUVEC viability was assessed using the CCK8 assay. Flow cytometry was utilized to examine the impact of FGF19 on HUVEC apoptosis. Levels of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were measured by ELISA. Real-time quantitative PCR and Western blotting were used to determine the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), nuclear factor erythroid 2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Cells were further divided into control, siRNA-Nrf2 (siNrf2), HG, HG+FGF19, HG+FGF19+negative control, and HG+FGF19+siNrf2 groups (n=3 each) to observe the effect of FGF19 on oxidative stress injury in HUVECs induced by high glucose after silencing the Nrf2 gene.
RESULTS:
Compared to the control group, the HG group exhibited increased apoptosis rate, increased IL-6, iNOS and MDA levels, and increased VEGF mRNA and protein expression, along with decreased T-SOD activity and decreased mRNA and protein expression of Nrf2 and HO-1 (P<0.05). Compared to the HG group, the HG+FGF19 group showed reduced apoptosis rate, decreased IL-6, iNOS and MDA levels, and decreased VEGF mRNA and protein expression, with increased T-SOD activity and increased Nrf2 and HO-1 mRNA and protein expression (P<0.05). Compared to the HG+FGF19+negative control group, the HG+FGF19+siNrf2 group had decreased T-SOD activity and increased MDA levels (P<0.05).
CONCLUSIONS
FGF19 can alleviate inflammation-induced injury in vascular endothelial cells caused by HG, potentially through the Nrf2/HO-1 signaling pathway.
Humans
;
NF-E2-Related Factor 2/genetics*
;
Signal Transduction
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Fibroblast Growth Factors/pharmacology*
;
Heme Oxygenase-1/physiology*
;
Apoptosis/drug effects*
;
Glucose
;
Inflammation
;
Interleukin-6/analysis*
;
Vascular Endothelial Growth Factor A/genetics*
;
Nitric Oxide Synthase Type II/analysis*
;
Cells, Cultured
6.Moxibustion promotes endometrial repair in rats with thin endometrium by inhibiting the NLRP3/pyroptosis axis via upregulating miR-223-3p.
Haiyi ZHOU ; Siyi HE ; Ruifang HAN ; Yongge GUAN ; Lijuan DONG ; Yang SONG
Journal of Southern Medical University 2025;45(7):1380-1388
OBJECTIVES:
To explore the mechanism through which moxibustion promotes endometrial repair in rats with in thin endometrium (TE).
METHODS:
Female SD rats were randomized into control group, 95% anhydrous ethanol-induced TE model group and moxibustion (at "Guan Yuan") group. High-throughput sequencing was used to identify the target genes of TE, and the targeting relationship between miR-223-3p and NLRP3 was verified using a dual luciferase assay. Histopathological of rat uterus was observed with HE staining, and expressions of miR-223-3p and NLRP3 were detected using RT-qPCR; serum levels of IL-1β and IL-18 of the rats were detected using ELISA, and protein expressions of NLRP3, ASC, caspase-1 and GSDMD in the uterus were detected with Western blotting. The pregnancies of the rats after treatment were counted.
RESULTS:
Enrichment analysis of the differential genes suggested up-regulated inflammatory response in TE, and dual luciferase assay verified targeted inhibition of NLRP3 expression by miR-223-3p. The rat models of TE had significantly decreased endometrial thickness and reduced endometrial glands and blood vessels with enhanced mRNA expression of NLRP3, increased serum levels of IL-1β and IL-18, up-regulated protein expressions of NLRP3, ASC, caspase-1 and GSDMD, lowered pregnancy rates on both the affected and unaffected sides and the overall number of pregnancies. Treatment of the rat models with mo-xibustion obviously increased the endometrial thickness and the density of glands and blood vessels, up-regulated miR-223-3p expression, lowered serum IL-1β and IL-18 levels and the protein expressions of NLRP3, ASC, caspase-1 and GSDMD, and significantly increased the number of pregnancies.
CONCLUSIONS
Moxibustion at "Guan Yuan" acupoint up-regulates the expression of miR-223-3p, which results in targeted inhibition of NLRP3 to suppress pyroptosis and promote endometrial repair in rat models of TE.
Animals
;
Female
;
MicroRNAs/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Endometrium/pathology*
;
Rats, Sprague-Dawley
;
Rats
;
Moxibustion
;
Pyroptosis
;
Up-Regulation
;
Interleukin-1beta/metabolism*
;
Interleukin-18
;
Caspase 1/metabolism*
7.The IL-33/ST2 Axis Protects Retinal Ganglion Cells by Modulating the Astrocyte Response After Optic Nerve Injury.
Zhigang QIAN ; Mengya JIAO ; Na ZHANG ; Xuhuan TANG ; Shiwang LIU ; Feng ZHANG ; Chenchen WANG ; Fang ZHENG
Neuroscience Bulletin 2025;41(1):61-76
IL-33 and its receptor ST2 play crucial roles in tissue repair and homeostasis. However, their involvement in optic neuropathy due to trauma and glaucoma remains unclear. Here, we report that IL-33 and ST2 were highly expressed in the mouse optic nerve and retina. Deletion of IL-33 or ST2 exacerbated retinal ganglion cell (RGC) loss, retinal thinning, and nerve fiber degeneration following optic nerve (ON) injury. This heightened retinal neurodegeneration correlated with increased neurotoxic astrocytes in Il33-/- mice. In vitro, rIL-33 mitigated the neurotoxic astrocyte phenotype and reduced the expression of pro-inflammatory factors, thereby alleviating the RGC death induced by neurotoxic astrocyte-conditioned medium in retinal explants. Exogenous IL-33 treatment improved RGC survival in Il33-/- and WT mice after ON injury, but not in ST2-/- mice. Our findings highlight the role of the IL-33/ST2 axis in modulating reactive astrocyte function and providing neuroprotection for RGCs following ON injury.
Animals
;
Interleukin-33/genetics*
;
Interleukin-1 Receptor-Like 1 Protein/genetics*
;
Optic Nerve Injuries/pathology*
;
Retinal Ganglion Cells/pathology*
;
Astrocytes/pathology*
;
Mice
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Neuroprotection/physiology*
8.Salidroside inhibits osteoclast differentiation based on osteoblast-osteoclast interaction via HIF-1a pathway.
Yutong JIN ; Yao WANG ; Chuan WANG ; Lingling ZHANG ; Dandan GAO ; Haizhao LIU ; Qingwen CAO ; Chenchen TIAN ; Yuhong BIAN ; Yue WANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):572-584
This study investigated the regulatory potential of salidroside (SAL), a primary active compound in Rhodiola rosea L., on osteoclast differentiation by modulating the hypoxia-inducible factor 1-alpha (HIF-1a) pathway in osteoblasts. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were employed to validate whether the receptor activator of nuclear factor-?B ligand (RANKL) is the downstream target gene of HIF-1a in osteoblasts. The study also utilized lipopolysaccharide (LPS)-induced mouse osteolysis to examine the impact of SAL on osteolysis in vivo. Furthermore, conditioned medium (CM) from SAL-pretreated osteoblasts was used to investigate the paracrine effects on osteoclastogenesis through the HIF-1a pathway. Hypoxic condition-induced overexpression of HIF-1a upregulated RANKL levels by binding to the RANKL promoter and enhancing transcription in osteoblastic cells. In vivo, SAL significantly alleviated bone tissue hypoxia and decreased the expression of HIF-1a by downregulating the expression of RANKL, vascular endothelial growth factor (VEGF), interleukin 6 (IL-6), and angiopoietin-like 4 (ANGPTL4). In the paracrine experiment, conditioned media from SAL-pretreated osteoblasts inhibited differentiation through the HIF-1a/RANKL, VEGF, IL-6, and ANGPTL4 pathways. RANKL emerges as the downstream target gene regulated by HIF-1a in osteoblasts. SAL significantly alleviates bone tissue hypoxia and bone loss in LPS-induced osteolysis through the HIF-1a/RANKL, VEGF, IL-6, and ANGPTL4 pathways. SAL inhibits osteoclast differentiation by regulating osteoblast paracrine secretion.
Animals
;
Osteoblasts/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Glucosides/administration & dosage*
;
Cell Differentiation/drug effects*
;
Phenols/administration & dosage*
;
Mice
;
Osteoclasts/metabolism*
;
RANK Ligand/genetics*
;
Rhodiola/chemistry*
;
Osteogenesis/drug effects*
;
Signal Transduction/drug effects*
;
Interleukin-6/genetics*
;
Male
;
RAW 264.7 Cells
;
Osteolysis/genetics*
;
Humans
;
Mice, Inbred C57BL
9.Knockdown of nuclear protein 1 delays pathological pro-gression of osteoarthritis through inhibiting chondrocyte ferroptosis.
Taiyang LIAO ; Zhenyuan MA ; Deren LIU ; Lei SHI ; Jun MAO ; Peimin WANG ; Liang DING
Journal of Zhejiang University. Medical sciences 2024;53(6):669-679
OBJECTIVES:
To investigate the effect of nuclear protein (Nupr) 1 on the pathological progression of osteoarthritis and its relationship with ferroptosis of chondrocytes.
METHODS:
Chondrocytes from mouse knees were divided into small interfering RNA (siRNA) control group, small interfering RNA targeting Nupr1 (siNupr1) group, siRNA control+IL-1β group (siRNA control interference for 24 h followed by 10 ng/mL IL-1β) and siNupr1+IL-1β group (siNupr1 interference for 24 h followed by 10 ng/mL IL-1β). The protein and mRNA expressions of Nupr1 were detected by Western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation viabilities were measured using the cell counting kit-8 method. The levels of ferrous ions were detected by FerroOrange staining. Lipid peroxidation levels were detected by C11-BODIPY-591 fluorescence imaging. The contents of malondialdehyde (MDA) and glutathione (GSH) were detected by enzyme-linked immunosorbent assay. The protein expressions of acyl-CoA synthetase long-chain family (ACSL) 4, P53, glutathione peroxidase (GPX) 4 and solute carrier family 7 member 11 gene (SLC7A11) were detected by Western blotting. The osteoarthritis model was constructed by destabilization of the medial meniscus (DMM) surgery in 7-week-old male C57BL/6J mice. The mice were randomly divided into four groups with 10 animals in each group: sham surgery (Sham)+adeno-associated virus serotype 5 (AAV5)-short hairpin RNA (shRNA) control group, Sham+AAV5-shRNA control targeting Nupr1 (shNupr1) group, DMM+AAV5-shRNA control group, and DMM+AAV5-shNupr1 group. Hematoxylin and eosin staining and Safranin O-Fast Green staining were used to observe the morphological changes in cartilage tissue. The Osteoarthritis Research Society International (OARSI) osteoarthritis cartilage histopathology assessment system was used to evaluate the degree of cartilage degeneration in mice. The mRNA expressions of matrix metallopeptidase (MMP) 13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 5, cyclooxy-genase (COX) 2, and GPX4 were detected by qRT-PCR.
RESULTS:
In vitro experiments showed that knocking down Nupr1 alleviated the decrease of chondrocyte proliferation activity induced by IL-1β, reduced iron accumulation in mouse chondrocytes, lowered lipid peroxidation, downregulated ACSL4 and P53 protein expression and upregulated GPX4 and SLC7A11 protein expression (all P<0.01), thereby inhibiting ferroptosis in mouse chondrocytes. Meanwhile, in vivo animal experiments demonstrated that knocking down Nupr1 delayed the degeneration of articular cartilage in osteoarthritis mice, improved the OARSI score, slowed down the degradation of the extracellular matrix in osteoarthritis cartilage, and reduced the expression of the key ferroptosis regulator GPX4 (all P<0.01).
CONCLUSIONS
Knockdown of Nupr1 can delay the pathological progression of osteoarthritis through inhibiting ferroptosis in mouse chondrocytes.
Animals
;
Ferroptosis
;
Mice
;
Chondrocytes/metabolism*
;
Osteoarthritis/pathology*
;
RNA, Small Interfering/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Interleukin-1beta/metabolism*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Coenzyme A Ligases/genetics*
;
Tumor Suppressor Protein p53/metabolism*
;
Mice, Inbred C57BL
;
DNA-Binding Proteins
;
Neoplasm Proteins
;
Amino Acid Transport System y+
;
Nuclear Receptor Subfamily 1, Group D, Member 1
10.In vivo study on IL-37 inhibition of malignant melanoma metastasis.
Jiantang YANG ; Lili FU ; Yanmiao YANG ; Lin LIN
Journal of Central South University(Medical Sciences) 2024;49(12):1885-1890
OBJECTIVES:
Malignant melanoma is highly aggressive, prone to early metastasis, and associated with extremely poor prognosis, posing a serious threat to human health. Identifying molecular mechanisms that inhibit metastasis is of great significance for improving treatment and prognosis. Interleukin-37 (IL-37), an anti-inflammatory cytokine, has not only been linked to various inflammatory diseases but also exhibits anti-tumor properties. This study aims to explore the effect of IL-37 on melanoma metastasis in vivo by establishing a murine model of pulmonary metastasis.
METHODS:
Mouse melanoma B16F1 cells were transfected with either IL-37 overexpression plasmid (IL-37 oe) or empty vector. Three groups were set: An IL-37 oe group (transfection reagent+IL-37 oe plasmid), a Vector group (transfection reagent+vector plasmid), and a Blank group (transfection reagent only). C57 mice were randomly divided into 3 groups (n=3 per group) and injected intravenously with logarithmic-phase B16F1 cells under sterile conditions. Mice were weighed every 3 days. After 1 month, mice were euthanized by cervical dislocation, and organs including lungs, heart, liver, spleen, and kidneys were harvested. Lung metastases were photographed and counted. Organs were fixed in 4% paraformaldehyde, embedded in paraffin, and stained with hematoxylin and eosin (HE).
RESULTS:
Western blotting confirmed successful plasmid transfection. There were no significant differences in body weight among the 3 groups over the 28-day period (P>0.05). Lung tumors were observed upon dissection, indicating successful metastasis modeling. HE staining showed no morphological differences in the heart, liver, spleen, and kidneys between groups. The numbers of lung metastases in the Blank, Vector, and IL-37 oe groups were (24.00±2.08), (24.67±0.88), and (5.33±1.45), respectively. The IL-37 oe group had significantly fewer lung metastases than the other 2 groups (P<0.05), while no difference was observed between the Blank and Vector groups.
CONCLUSIONS
IL-37 significantly inhibits lung metastasis of malignant melanoma cells in mice without affecting body weight or major organs. It may serve as a potential molecular target for gene therapy or immunotherapy of malignant melanoma.
Animals
;
Mice
;
Interleukin-1/genetics*
;
Lung Neoplasms/secondary*
;
Melanoma, Experimental/pathology*
;
Mice, Inbred C57BL
;
Cell Line, Tumor
;
Transfection
;
Melanoma/pathology*
;
Female
;
Male

Result Analysis
Print
Save
E-mail