1.Preliminary study on the role of TM9SF2 knockdown in promoting the activity of the type I interferon signaling pathway to inhibit vesicular stomatitis virus replication.
Kang LI ; Xinyu WANG ; Ran YE ; Lingyun GUO ; Linxu WANG ; Nuo XU ; Tong ZHANG ; Xiaotao DUAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):481-487
Objective To explore the effect of the knockdown of transmembrane 9 superfamily protein member 2 (TM9SF2) on the replication of vesicular stomatitis virus (VSV), and investigate its role in the mechanism of antiviral innate immunity. Methods Small interfering RNA (siRNA) was used to knock down the TM9SF2 gene in human non-small cell lung cancer A549 cells. The CCK-8 method was used to assess cell proliferation. A VSV-green fluorescent protein (VSV-GFP) infected cell model was established. The plaque assay was used to measure the viral titer in the supernatant. RT-qPCR and Western blotting were employed to quantify the mRNA and protein levels of VSV genome replication in A549 cells following VSV infection, as well as the expression of interferon β (IFN-β) mRNA and interferon regulatory factor 3 (IRF3) protein phosphorylation following polyinosinic-polycytidylic acid (poly(I:C)) stimulation. Results Compared to the negative control, the knockdown of TM9SF2 exhibited a significant effect, with no observed impact on A549 cell proliferation. The VSV-GFP infected A549 cell model was successfully established. After viral stimulation, fluorescence intensity was reduced following TM9SF2 knockdown, and the mRNA and protein levels of VSV were significantly downregulated. The viral titer of VSV was decreased. After poly(I:C) stimulation, TM9SF2 knockdown significantly upregulated the mRNA level of IFN-β and the phosphorylation level of IRF3 protein. Conclusion The knockdown of TM9SF2 inhibits the replication of vesicular stomatitis virus, and positively regulates the type I interferon signaling pathway, thus enhancing the host's antiviral innate immune response.
Humans
;
Virus Replication/genetics*
;
Signal Transduction
;
Membrane Proteins/metabolism*
;
A549 Cells
;
Vesiculovirus/physiology*
;
Interferon-beta/metabolism*
;
Interferon Regulatory Factor-3/genetics*
;
Interferon Type I/metabolism*
;
Vesicular Stomatitis/immunology*
;
Gene Knockdown Techniques
;
Vesicular stomatitis Indiana virus/physiology*
;
RNA, Small Interfering/genetics*
2.Mechanism by which KLF9 regulates IFN-β expression in macrophages.
Xiurui YAN ; Zhaoqing GUAN ; Jianli SONG ; Yaolin ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):882-887
Objective To investigate the role and mechanism of the zinc finger protein Kruppel-like transcription factor 9 (KLF9) in the stimulation of type I interferon expression induced by herpes simplex virus type 1 (HSV-1) in macrophages. Methods Agarose Gel electrophoresis, quantitative real-time PCR (qRT-PCR) and western blot analyses were employed to detect the KLF9 relative expression in bone marrow-derived macrophages (BMDMs) from Klf9-/- (gKO) mice and wild-type (WT) mice. RNA-seq analysis was utilized to identify the potential targeted genes upon HSV-1 stimulation in BMDMs. ELISA was used to measure the potent of IFN-β in the supernatant of BMDMs derived from gKO and WT mice after HSV-1 stimulation. qRT-PCR analysis was employed to further confirm the changes of Ifnb1 and interferon-stimulated gene (ISG) such as interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), interferon-stimulated exonuclease gene 20 (Isg20), cholesterol 25-hydroxylase (Ch25h) and 2'-5' oligoadenylate synthetase-like 1 (Oasl1). Western blot was used to detect the expression of phosphorylated interferon regulatory factor-3 (p-IRF3), IRF3, phosphorylated interferon regulatory factor-7 (p-IRF7), IRF7, phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) and NF-κB p65. CUT-Tag and ChIP-qPCR assay were utilized to confirm the binding region of KLF9 in Ifnb1. Results The KLF9 expression was significantly decreased in BMDMs from gKO mice compared with that from WT mice. The RNA-seq analysis showed that Klf9 deletion in BMDMs resulted in an impaired type I interferon signaling pathway. The qRT-PCR analysis revealed that Klf9 deletion in BMDMs led to a significant decrease of Ifnb1 and ISG such as Ifit1, Ch25h and Oasl1 except Isg20. Moreover, ELISA revealed that Klf9 knockout in BMDMs resulted in a significant decrease of IFN-β secreted from BMDMs. Mechanistically, KLF9 directly binds to the promoter of Ifnb1. Conclusion KLF9 is essential for macrophages to resist HSV-1 infection.
Animals
;
Kruppel-Like Transcription Factors/physiology*
;
Interferon-beta/metabolism*
;
Macrophages/virology*
;
Mice
;
Herpesvirus 1, Human/physiology*
;
Mice, Knockout
;
Signal Transduction
;
Mice, Inbred C57BL
;
Interferon Regulatory Factor-3/genetics*
;
Interferon Regulatory Factor-7/genetics*
;
Gene Expression Regulation
3.The TGF‑β/miR-23a-3p/IRF1 axis mediates immune escape of hepatocellular carcinoma by inhibiting major histocompatibility complex class I.
Ying YU ; Li TU ; Yang LIU ; Xueyi SONG ; Qianqian SHAO ; Xiaolong TANG
Journal of Southern Medical University 2025;45(7):1397-1408
OBJECTIVES:
To investigate the mechanism by which transforming growth factor‑β (TGF‑β) regulates major histocompatibility complex class I (MHC-I) expression in hepatocellular carcinoma (HCC) cells and its role in immune evasion of HCC.
METHODS:
HCC cells treated with TGF‑β alone or in combination with SB-431542 (a TGF-β type I receptor inhibitor) were examined for changes in MHC-I expression using RT-qPCR and Western blotting. A RNA interference experiment was used to explore the role of miR-23a-3p/IRF1 signaling in TGF‑β‑mediated regulation of MHC-I. HCC cells with different treatments were co-cultured with human peripheral blood mononuclear cells (PBMCs), and the changes in HCC cell proliferation was assessed using CCK-8 and colony formation assays. T-cell cytotoxicity in the co-culture systems was assessed with lactate dehydrogenase (LDH) release and JC-1 mitochondrial membrane potential assays, and T-cell activation was evaluated by flow cytometric analysis of CD69 cells and ELISA for TNF-α secretion.
RESULTS:
TGF‑β treatment significantly suppressed MHC-I expression in HCC cells and reduced T-cell activation, leading to increased tumor cell proliferation and decreased HCC cell death in the co-culture systems. Mechanistically, TGF-β upregulated miR-23a-3p, which directly targeted IRF1 to inhibit MHC-I transcription. Overexpression of miR-23a-3p phenocopied TGF‑β‑induced suppression of IRF1 and MHC-I.
CONCLUSIONS
We reveal a novel immune escape mechanism of HCC, in which TGF‑β attenuates T cell-mediated antitumor immunity by suppressing MHC-I expression through the miR-23a-3p/IRF1 signaling axis.
Humans
;
MicroRNAs/genetics*
;
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Interferon Regulatory Factor-1/metabolism*
;
Transforming Growth Factor beta/metabolism*
;
Signal Transduction
;
Histocompatibility Antigens Class I/metabolism*
;
Cell Line, Tumor
;
Tumor Escape
;
Coculture Techniques
4.Single-cell transcriptome profiling identifies the activation of type I interferon signaling in ossified posterior longitudinal ligament.
Xiao LIU ; Lei ZHANG ; Ge WANG ; Wei ZHAO ; Chen LIANG ; Youzhi TANG ; Yenan FU ; Bo LIU ; Jing ZHANG ; Xiaoguang LIU ; Hongquan ZHANG ; Yu YU
Frontiers of Medicine 2024;18(6):1087-1099
Ossification of the posterior longitudinal ligament (OPLL) is a condition comprising ectopic bone formation from spinal ligaments. This disease is a leading cause of myelopathy in the Asian population. However, the molecular mechanism underlying OPLL and efficient preventive interventions remain unclear. Here, we performed single-cell RNA sequencing and revealed that type I interferon (IFN) signaling was activated in the ossified ligament of patients with OPLL. We also observed that IFN-β stimulation promoted the osteogenic differentiation of preosteoblasts in vitro and activated the ossification-related gene SPP1, thereby confirming the single-cell RNA sequencing findings. Further, blocking the IFN-α/β subunit 1 receptor (IFNAR1) using an anti-IFNAR1 neutralizing antibody markedly suppressed osteogenic differentiation. Together, these results demonstrated that the type I IFN signaling pathway facilitated ligament ossification, and the blockade of this signaling might provide a foundation for the prevention of OPLL.
Humans
;
Signal Transduction
;
Interferon Type I/metabolism*
;
Ossification of Posterior Longitudinal Ligament/genetics*
;
Gene Expression Profiling
;
Single-Cell Analysis
;
Osteogenesis/genetics*
;
Receptor, Interferon alpha-beta/metabolism*
;
Male
;
Female
;
Cell Differentiation
;
Middle Aged
5.Knockout of RIG-I in HEK293 cells by CRISPR/Cas9.
Ziyi CHEN ; Yirong WU ; Yuting ZHANG ; Youling GAO
Chinese Journal of Biotechnology 2024;40(11):4254-4265
We knocked out the retinoic acid-inducible gene I (RIG-I) in HEK293 cells via CRISPR/Cas9 to reveal the effects of RIG-I knockout on the key factors in the type I interferon signaling pathway. Three single guide RNAs (sgRNAs) targeting RIG-I were designed, and the recombination vectors were constructed on the basis of the pX459 vector and used to transfect HEK293 cells, which were screened by puromycin subsequently. Furthermore, a mimic of virus, poly I: C, was used to transfect the cells screened out. RIG-I knockout was checked by sequencing, real-time quantitative PCR, Western blotting, and immunofluorescence assay. Meanwhile, the expression levels of key factors of type I interferon signaling pathway such as melanoma differentiation-associated gene 5 (MDA5), interferonβ1 (IFNβ1), and nuclear factor-kappa B p65 [NF-κB(p65)], as well as cell viability, were determined. The results showed that two HEK293 cell lines (S1 and S3) with RIG-I knockout were obtained, which exhibited lower mRNA and protein levels of RIG-I than the wild type HEK293 cells (P < 0.05). The mRNA levels of MDA5 and IFNβ1 in S1 and S3 cells and the protein level of NF-κB(p65) in S3 cells were lower than those in the wild type (P < 0.05). More extranuclear NF-κB(p65) protein was detected in S1 cells than in the wild type after transfection with poly I: C. Plus, the wild-type and S1 cells transfected with poly I: C for 48 h showcased reduced viability (P < 0.05), while S3 cells did not display the reduction in cell viability. In summary, the present study obtained two HEK293 cell lines with RIG-I knockout via CRISPR/Cas9, which provided a stable cell model for exploring the mechanism of type I interferon signaling pathway.
Humans
;
HEK293 Cells
;
CRISPR-Cas Systems
;
DEAD Box Protein 58/metabolism*
;
Signal Transduction
;
Receptors, Immunologic/metabolism*
;
Gene Knockout Techniques
;
Transfection
;
DEAD-box RNA Helicases/metabolism*
;
RNA, Guide, CRISPR-Cas Systems/genetics*
;
Interferon-Induced Helicase, IFIH1/metabolism*
;
Transcription Factor RelA/metabolism*
;
Interferon-beta/metabolism*
6.Mechanism of transforming growth factor- β1 induce renal fibrosis based on transcriptome sequencing analysis.
Huanan LI ; Peifen LI ; Shanyi LI ; Xueying ZHANG ; Xinru DONG ; Ming YANG ; Weigan SHEN
Journal of Zhejiang University. Medical sciences 2023;52(5):594-604
OBJECTIVES:
To explore the mechanism of transforming growth factor-β1 (TGF-β1) induce renal fibrosis.
METHODS:
Renal fibroblast NRK-49F cells treated with and without TGF-β1 were subjected to RNA-seq analysis. DESeq2 was used for analysis. Differentially expressed genes were screened with the criteria of false discovery rate<0.05 and l o g 2 F C >1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for differentially expressed genes. Genes encoding transcription factors were further screened for differential expression genes. Then, the expression of these genes during renal fibrosis was verified using unilateral ureteral obstruction (UUO)-induced mouse renal fibrosis model and a public gene expression dataset (GSE104954).
RESULTS:
After TGF-β1 treatment for 6, 12 and 24 h, 552, 1209 and 1028 differentially expressed genes were identified, respectively. GO analysis indicated that these genes were significantly enriched in development, cell death, and cell migration. KEGG pathway analysis showed that in the early stage of TGF-β1 induction (TGF-β1 treatment for 6 h), the changes in Hippo, TGF-β and Wnt signaling pathways were observed, while in the late stage of TGF-β1 induction (TGF-β1 treatment for 24 h), the changes of extracellular matrix-receptor interaction, focal adhesion and adherens junction were mainly enriched. Among the 291 up-regulated differentially expressed genes treated with TGF-β1 for 6 h, 13 genes (Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Ahr, Foxo1, Myc, Tcf7, Foxc2, Glis1) encoded transcription factors. Validation in a cell model showed that TGF-β1 induced expression of 9 transcription factors (encoded by Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Myc, Tcf7), while the expression levels of the other 4 genes did not significantly change after TGF-β1 treatment. Validation results in UUO-induced mouse renal fibrosis model showed that Snai1, Irf8, Bhlhe40, Junb, Arid5a, Myc and Tcf7 were up-regulated after UUO, Vdr was down-regulated and there was no significant change in Lef1. Validation based on the GSE104954 dataset showed that IRF8 was significantly overexpressed in the renal tubulointerstitium of patients with diabetic nephropathy or IgA nephropathy, MYC was highly expressed in diabetic nephropathy, and the expressions of the other 7 genes were not significantly different compared with the control group.
CONCLUSIONS
TGF-β1 induces differentially expressed genes in renal fibroblasts, among which Irf8 and Myc were identified as potential targets of chronic kidney disease and renal fibrosis.
Mice
;
Animals
;
Humans
;
Transforming Growth Factor beta1/metabolism*
;
Diabetic Nephropathies/pathology*
;
Transcriptome
;
Signal Transduction
;
Kidney
;
Ureteral Obstruction/pathology*
;
Fibrosis
;
Interferon Regulatory Factors
;
Transforming Growth Factor beta/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Transcription Factors/metabolism*
7.Rapamycin alleviates inflammation by up-regulating TGF-β/Smad signaling in a mouse model of autoimmune encephalomyelitis.
Zhenfei LI ; Lingling NIE ; Liping CHEN ; Yafei SUN ; Li GUO
Journal of Southern Medical University 2019;39(1):35-42
OBJECTIVE:
To evaluate the efficacy of rapmycin for treatment of experimental autoimmune encephalomyelitis (EAE) in mice and explore the underlying mechanism.
METHODS:
An EAE model was established in C57BL/6 mice. After immunization, the mice were divided into model group and rapamycin groups treated daily with low-dose (0.3 mg/kg) or high-dose (1 mg/kg) rapamycin. The clinical scores of the mice were observed using Knoz score, the infiltration of IL-17 cells in the central nervous system (CNS) was determined using immunohistochemistry; the differentiation of peripheral Treg cells was analyzed using flow cytometry, and the changes in the levels of cytokines were detected with ELISA; the changes in the expressions of p-Smad2 and p- smad3 were investigated using Western blotting.
RESULTS:
High-dose rapamycin significantly improved the neurological deficits scores of EAE mice. In high-dose rapamycin group, the scores in the onset stage, peak stage and remission stage were 0.14±0.38, 0.43±1.13 and 0.14±0.37, respectively, as compared with 1.14±0.69, 2.14±1.06 and 2.2±0.75 in the model group. The infiltration of inflammatory IL-17 cells was significantly lower in high-dose rapamycin group than in the model group (43±1.83 153.5±7.02). High-dose rapamycin obviously inhibited the production of IL-12, IFN-γ, IL-17 and IL-23 and induced the anti-inflammatory cytokines IL-10 and TGF-β. The percentage of Treg in CD4+ T cells was significantly higher in high- dose rapamycin group than in the model group (10.17 ± 0.68 3.52 ± 0.32). In the experiment, combined treatments of the lymphocytes isolated from the mice with rapamycin and TGF-β induced a significant increase in the number of Treg cells (13.66±1.89) compared with the treatment with rapamycin (6.23±0.80) or TGF-β (4.87±0.85) alone. Rapamycin also obviously up-regulated the expression of p-Smad2 and p-Smad3 in the lymphocytes.
CONCLUSIONS
Rapamycin can promote the differentiation of Treg cells by up-regulating the expression of p-Smad2 and p-smad3 to improve neurological deficits in mice with EAE.
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
therapeutic use
;
Cell Differentiation
;
drug effects
;
Encephalomyelitis, Autoimmune, Experimental
;
drug therapy
;
metabolism
;
Interferon-gamma
;
metabolism
;
Interleukins
;
metabolism
;
Lymphocytes
;
cytology
;
Mice
;
Mice, Inbred C57BL
;
Sirolimus
;
administration & dosage
;
therapeutic use
;
Smad Proteins
;
metabolism
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Transforming Growth Factor beta
;
metabolism
;
Up-Regulation
8.Identification of new type I interferon-stimulated genes and investigation of their involvement in IFN-β activation.
Xiaolin ZHANG ; Wei YANG ; Xinlu WANG ; Xuyuan ZHANG ; Huabin TIAN ; Hongyu DENG ; Liguo ZHANG ; Guangxia GAO
Protein & Cell 2018;9(9):799-807
Virus infection induces the production of type I interferons (IFNs). IFNs bind to their heterodimeric receptors to initiate downstream cascade of signaling, leading to the up-regulation of interferon-stimulated genes (ISGs). ISGs play very important roles in innate immunity through a variety of mechanisms. Although hundreds of ISGs have been identified, it is commonly recognized that more ISGs await to be discovered. The aim of this study was to identify new ISGs and to probe their roles in regulating virus-induced type I IFN production. We used consensus interferon (Con-IFN), an artificial alpha IFN that was shown to be more potent than naturally existing type I IFN, to treat three human immune cell lines, CEM, U937 and Daudi cells. Microarray analysis was employed to identify those genes whose expressions were up-regulated. Six hundred and seventeen genes were up-regulated more than 3-fold. Out of these 617 genes, 138 were not previously reported as ISGs and thus were further pursued. Validation of these 138 genes using quantitative reverse transcription PCR (qRT-PCR) confirmed 91 genes. We screened 89 genes for those involved in Sendai virus (SeV)-induced IFN-β promoter activation, and PIM1 was identified as one whose expression inhibited SeV-mediated IFN-β activation. We provide evidence indicating that PIM1 specifically inhibits RIG-I- and MDA5-mediated IFN-β signaling. Our results expand the ISG library and identify PIM1 as an ISG that participates in the regulation of virus-induced type I interferon production.
Cells, Cultured
;
Gene Library
;
Humans
;
Interferon Type I
;
metabolism
;
Interferon-beta
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-pim-1
;
genetics
;
Up-Regulation
9.Molecular cloning, characterization and expression analysis of woodchuck retinoic acid-inducible gene I.
Qi YAN ; Qin LIU ; Meng-Meng LI ; Fang-Hui LI ; Bin ZHU ; Jun-Zhong WANG ; Yin-Ping LU ; Jia LIU ; Jun WU ; Xin ZHENG ; Meng-Ji LU ; Bao-Ju WANG ; Dong-Liang YANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):335-343
Cytosolic retinoic acid-inducible gene I (RIG-I) is an important innate immune RNA sensor and can induce antiviral cytokines, e.g., interferon-β (IFN-β). Innate immune response to hepatitis B virus (HBV) plays a pivotal role in viral clearance and persistence. However, knowledge of the role that RIG-I plays in HBV infection is limited. The woodchuck is a valuable model for studying HBV infection. To characterize the molecular basis of woodchuck RIG-I (wRIG-I), we analyzed the complete coding sequences (CDSs) of wRIG-I, containing 2778 base pairs that encode 925 amino acids. The deduced wRIG-I protein was 106.847 kD with a theoretical isoelectric point (pI) of 6.07, and contained three important functional structures [caspase activation and recruitment domains (CARDs), DExD/H-box helicases, and a repressor domain (RD)]. In woodchuck fibroblastoma cell line (WH12/6), wRIG-I-targeted small interfering RNA (siRNA) down-regulated RIG-I and its downstrean effector-IFN-β transcripts under RIG-I' ligand, 5'-ppp double stranded RNA (dsRNA) stimulation. We also measured mRNA levels of wRIG-I in different tissues from healthy woodchucks and in the livers from woodchuck hepatitis virus (WHV)-infected woodchucks. The basal expression levels of wRIG-I were abundant in the kidney and liver. Importantly, wRIG-I was significantly up-regulated in acutely infected woodchuck livers, suggesting that RIG-I might be involved in WHV infection. These results may characterize RIG-I in the woodchuck model, providing a strong basis for further study on RIG-I-mediated innate immunity in HBV infection.
Animals
;
Cell Line, Tumor
;
Cloning, Molecular
;
DEAD Box Protein 58
;
antagonists & inhibitors
;
genetics
;
immunology
;
Fibroblasts
;
immunology
;
pathology
;
Gene Expression
;
Hepatitis B
;
genetics
;
immunology
;
pathology
;
veterinary
;
Hepatitis B Virus, Woodchuck
;
Immunity, Innate
;
Interferon-beta
;
genetics
;
immunology
;
Isoelectric Point
;
Kidney
;
immunology
;
pathology
;
virology
;
Liver
;
immunology
;
pathology
;
virology
;
Marmota
;
genetics
;
immunology
;
virology
;
Open Reading Frames
;
Protein Domains
;
RNA, Double-Stranded
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rodent Diseases
;
genetics
;
immunology
;
pathology
;
virology
10.Structure and Function of an Alternative Splicing Isoform of Stimulator of Interferon Genes STING(sv).
Yanyan WANG ; Rui JIN ; Guoping ZHOU ; Huaguo XU
Chinese Journal of Virology 2015;31(5):494-499
Stimulator of interferon genes (STING) is an important protein of the innate immune response, and protects against viral infections. To search for an alternative splicing isoform of STING, we undertook rapid amplification of cDNA ends (RACE) and RT-PCR with RNA extracted from human embryonic kidney (HEK) 293 cells and primers designed according to the mRNA sequence of full-length STING(NM-198282. 82). The new sequence was compared using a bioinformatics method. Then, a newly discovered, alternative splicing isoform of STING, named "STING(sv)", and STING(wt) were subcloned into the eukaryotic expression vector pEGFP-C1 and pcDNA 3. 1. Whole-cell extracts were analyzed by western blotting and then probed with monoclonal antibody against enhanced green fluorescent protein (EGFP) after transfection of EGFP-STING(wt) and EGFP-STING(wt) plasmids in HEK293 cells. pcDNA-STING(wt) and pcDNA-STING(wt) were transfected in HEK293 cells, and the luciferase assay carried out. Compared with STING(wt), STING(sv) lacks exon 7 so that shift in the reading frame may produce a protein with a different C-terminal in amino acids 1-30. Western blotting confirmed an expected strong band at 58 x 10(3) kD. The functional luciferase assay showed that STING(sv) inhibited the activity of the interferon (IFN)-β promoter. STING(sv) can be expressed in multiple tissues and distinct cell lines. Our discovery of a new, alternative splicing isoform of STING provides new insights into the functional regulation of STING. STING(sv) could be a dominant negative inhibitor for the activity of the IFN-β promoter in the virus-infection pathway. Hence, STING(sv) could participate in the "fine tuning" of the virus-induced activation of IFN. Therefore, exploring the role of STING(sv) in the pathogenesis of human diseases could be very worthwhile.
Alternative Splicing
;
Amino Acid Sequence
;
HEK293 Cells
;
Humans
;
Interferon-beta
;
genetics
;
Membrane Proteins
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Promoter Regions, Genetic
;
Protein Isoforms
;
genetics
;
metabolism
;
Sequence Alignment

Result Analysis
Print
Save
E-mail