1.Knockout of RIG-I in HEK293 cells by CRISPR/Cas9.
Ziyi CHEN ; Yirong WU ; Yuting ZHANG ; Youling GAO
Chinese Journal of Biotechnology 2024;40(11):4254-4265
We knocked out the retinoic acid-inducible gene I (RIG-I) in HEK293 cells via CRISPR/Cas9 to reveal the effects of RIG-I knockout on the key factors in the type I interferon signaling pathway. Three single guide RNAs (sgRNAs) targeting RIG-I were designed, and the recombination vectors were constructed on the basis of the pX459 vector and used to transfect HEK293 cells, which were screened by puromycin subsequently. Furthermore, a mimic of virus, poly I: C, was used to transfect the cells screened out. RIG-I knockout was checked by sequencing, real-time quantitative PCR, Western blotting, and immunofluorescence assay. Meanwhile, the expression levels of key factors of type I interferon signaling pathway such as melanoma differentiation-associated gene 5 (MDA5), interferonβ1 (IFNβ1), and nuclear factor-kappa B p65 [NF-κB(p65)], as well as cell viability, were determined. The results showed that two HEK293 cell lines (S1 and S3) with RIG-I knockout were obtained, which exhibited lower mRNA and protein levels of RIG-I than the wild type HEK293 cells (P < 0.05). The mRNA levels of MDA5 and IFNβ1 in S1 and S3 cells and the protein level of NF-κB(p65) in S3 cells were lower than those in the wild type (P < 0.05). More extranuclear NF-κB(p65) protein was detected in S1 cells than in the wild type after transfection with poly I: C. Plus, the wild-type and S1 cells transfected with poly I: C for 48 h showcased reduced viability (P < 0.05), while S3 cells did not display the reduction in cell viability. In summary, the present study obtained two HEK293 cell lines with RIG-I knockout via CRISPR/Cas9, which provided a stable cell model for exploring the mechanism of type I interferon signaling pathway.
Humans
;
HEK293 Cells
;
CRISPR-Cas Systems
;
DEAD Box Protein 58/metabolism*
;
Signal Transduction
;
Receptors, Immunologic/metabolism*
;
Gene Knockout Techniques
;
Transfection
;
DEAD-box RNA Helicases/metabolism*
;
RNA, Guide, CRISPR-Cas Systems/genetics*
;
Interferon-Induced Helicase, IFIH1/metabolism*
;
Transcription Factor RelA/metabolism*
;
Interferon-beta/metabolism*

Result Analysis
Print
Save
E-mail