1.Advances in molecular mechanisms and neuronal circuits underlying circadian rhythms in Drosophila.
Wu-Yan XU ; Chun-Xue QIAO ; Fei-Xiang LI ; Ding-Bang MA
Acta Physiologica Sinica 2025;77(4):627-640
Circadian rhythms are core regulatory mechanisms that evolved to align biological functions with the Earth's rotation. These rhythms are conserved across organisms from unicellular life to multicellular species and play essential roles in metabolism, immune responses, and sleep-wake cycle. Circadian disruptions are strongly associated with various diseases. Over the past decades, genetic studies in Drosophila and mice have identified key conserved clock genes and uncovered transcription-translation feedback loops governing circadian regulation. Additionally, rhythmic neurons in the brain integrate complex neural circuits to precisely regulate physiological and behavioral rhythms. This review highlights recent advances in understanding the neuronal circuit mechanisms of rhythmic neurons in the Drosophila brain and discusses future directions for translating circadian rhythm research into chronomedicine and precision therapies.
Animals
;
Circadian Rhythm/genetics*
;
Neurons/physiology*
;
Drosophila/physiology*
;
Brain/physiology*
;
Nerve Net/physiology*
2.Effects of larval feeding amount on development and deltamethrin resistance in Aedes albopictus.
Ying WANG ; Wengyang DENG ; Chaomei WU ; Shihuan TIAN ; Hua LI
Journal of Southern Medical University 2025;45(3):488-493
OBJECTIVES:
To investigate how larval feeding regimens influence development and deltamethrin resistance of Aedes albopictus to provide evidence for standardizing larval feeding protocols in studies of insecticide resistance.
METHODS:
Aedes albopictus larvae of a laboratory resistant strain were divided into 3 groups (n=500) and reared with high, medium, and low food availability (100, 50, or 25 mg daily for the 1st and 2nd instars, and 500 mg 250, or 125 mg daily for 3rd and 4th instars). The developmental time, pupation rate, adult emergence rate, adult body weight, and wing length were recorded in each group, and deltamethrin resistance of the mosquitoes was assessed using larval bioassays and contact tube tests for adults.
RESULTS:
Significant developmental differences were observed across the 3 feeding groups. Larval development time decreased as the food availability increased, and both high- and low-food groups showed reduced pupation rates (χ²=16.282, 7.440) and emergence rates (χ²=4.093, 6.977) compared to the medium-food group. Adult body weight and wing length were positively correlated with the amount of larval food intake (P<0.05). In high, medium and low food intake groups, larval LC50 values for deltamethrin were 0.110, 0.072 and 0.064 mg/L, adult KDT50 values were 97.404, 68.964 and 65.005 min, and adult mosquitoe mortality rates at 24 h after deltamethrin exposure were 12%, 16% and 19%, respectively.
CONCLUSIONS
The feeding amount during larval stage significantly impacts the development and deltamethrin resistance of Aedes albopictus, suggesting the importance of standardization of larval nutrition for ensuring comparability of resistance test data across laboratories.
Animals
;
Aedes/physiology*
;
Pyrethrins/pharmacology*
;
Nitriles/pharmacology*
;
Larva/physiology*
;
Insecticide Resistance
;
Insecticides/pharmacology*
;
Feeding Behavior
3.The Glutamate-gated Chloride Channel Facilitates Sleep by Enhancing the Excitability of Two Pairs of Neurons in the Ventral Nerve Cord of Drosophila.
Yaqian FAN ; Yao TIAN ; Junhai HAN
Neuroscience Bulletin 2025;41(10):1729-1742
Sleep, an essential and evolutionarily conserved behavior, is regulated by numerous neurotransmitter systems. In mammals, glutamate serves as the wake-promoting signaling agent, whereas in Drosophila, it functions as the sleep-promoting signal. However, the precise molecular and cellular mechanisms through which glutamate promotes sleep remain elusive. Our study reveals that disruption of glutamate signaling significantly diminishes nocturnal sleep, and a neural cell-specific knockdown of the glutamate-gated chloride channel (GluClα) markedly reduces nocturnal sleep. We identified two pairs of neurons in the ventral nerve cord (VNC) that receive glutamate signaling input, and the GluClα derived from these neurons is crucial for sleep promotion. Furthermore, we demonstrated that GluClα mediates the glutamate-gated inhibitory input to these VNC neurons, thereby promoting sleep. Our findings elucidate that GluClα enhances nocturnal sleep by mediating the glutamate-gated inhibitory input to two pairs of VNC neurons, providing insights into the mechanism of sleep promotion in Drosophila.
Animals
;
Sleep/physiology*
;
Neurons/metabolism*
;
Chloride Channels/genetics*
;
Drosophila Proteins/genetics*
;
Drosophila
;
Glutamic Acid/metabolism*
;
Animals, Genetically Modified
4.Optimization of the Bombyx mori baculovirus expression system enhances the expression level of recombinant human keratinocyte growth factor-1 (hKGF-1).
Shuohao LI ; Xingyang WANG ; Xiaofeng WU ; Yujing XU ; Tian YANG ; Xinyu ZHU
Chinese Journal of Biotechnology 2025;41(7):2634-2646
Human keratinocyte growth factor-1 (hKGF-1), a member of the fibroblast growth factor (FGF) family, plays crucial roles in organ development, cell proliferation, wound healing, and tissue repair, representing one of the most effective and specific growth factors for skin repair. However, obtaining recombinant hKGF-1 remains challenging due to its universally low expression efficiency in vitro. This study employs the Bombyx mori baculovirus expression system to establish a technological platform that utilizes the economically important insect Bombyx mori as a bioreactor for high-efficiency and low-cost expression and production of recombinant human keratinocyte growth factor 1 (hKGF-1) protein, ultimately achieving high-level expression of hKGF-1 in Bombyx mori ovary cell line (BmN). In this study, we optimized the hKGF-1 sequence based on the codon preference of baculovirus. By fusing hKGF-1 with polyhedrin (highly expressed in this system) and adding extra promoters and enhancers, we significantly improved the expreesion level of hKGF-1 in Bombyx mori cells. The results demonstrated that the aforementioned strategies significantly enhanced the expression level of hKGF-1 in Bombyx mori cells. SDS-PAGE and Western blotting results revealed that the highest hKGF-1 expression (accounting for 8.7% of total cellular protein) was achieved when the Polh promoter was combined in tandem with the P6.9 promoter and hKGF-1 was fused with a 15-residue polyhedrin fragment for co-expression. The optimal harvest time was determined to be 120 h post transfection. This study achieved the efficient expression of hKGF-1 in Bombyx mori cells, establishing an ideal technological platform for the industrial utilization of recombinant hKGF-1. The developed methodology not only provides valuable technical references for the production of other growth factors and complex proteins, but also demonstrates significant implications for employing silkworms as bioreactors for recombinant human protein expression.
Bombyx/metabolism*
;
Animals
;
Baculoviridae/metabolism*
;
Humans
;
Fibroblast Growth Factor 7/biosynthesis*
;
Recombinant Proteins/genetics*
;
Cell Line
;
Genetic Vectors/genetics*
5.Expression pattern of polyhedrin of BmNPV and involvement of importin α in the nuclear import of Polh.
Jiale LI ; Xingyang WANG ; Xiaofeng WU
Chinese Journal of Biotechnology 2025;41(7):2647-2657
Bombyx mori nucleopolyhedrovirus (BmNPV) is extremely harmful to the silk industry. The polyhedrin, which encodes the polyhedrin (Polh), can be expressed at ultra-high levels and form occlusion bodies in the nucleus, embedding the progeny virus within it. However, the detailed mechanism by which polyhedrin is transported into the host cell nucleus remains unknown. Clarifying the nuclear import mechanisms of viral proteins can help us develop better prevention and treatment measures against baculoviruses. This study employed molecular cloning, co-immunoprecipitation, and immunofluorescence to analyze in detail the expression pattern of the highly expressed polyhedrin in the very late stage of the virus, and further revealed that the host protein importin α participates in the nuclear import of polyhedrin through protein interactions. This study provides a reference for further elucidating the nuclear import mechanisms of the baculovirus proteins including polyhedrin that can enter the nucleus.
Nucleopolyhedroviruses/metabolism*
;
Active Transport, Cell Nucleus
;
Animals
;
Bombyx/virology*
;
alpha Karyopherins/metabolism*
;
Cell Nucleus/metabolism*
;
Viral Structural Proteins/metabolism*
;
Occlusion Body Matrix Proteins
6.Immunogenic evaluation of pseudorabies virus gB protein expressed in the baculovirus-insect cell system.
Jin WANG ; Kai WANG ; Ying ZHANG ; Shuzhen TAN ; Shiqi SUN ; Huichen GUO ; Shuanghui YIN ; Jiaqiang NIU
Chinese Journal of Biotechnology 2025;41(7):2694-2706
Pseudorabies (PR) is an infectious disease caused by the pseudorabies virus (PRV), affecting various domesticated and wild animals. Since pigs are the only natural hosts of PRV, PR poses a serious threat to the pig farming industry. Currently, PR is primarily prevented through vaccination with inactivated vaccines or genetically modified attenuated live vaccines. Developing safe and effective genetically engineered vaccines would facilitate the eradication and control of PR. In this study, the PRV vaccine strain Bartha-K61 was used as the reference strain. The gB protein was expressed via the baculovirus-insect cell expression system. Non-denaturing gel electrophoresis confirmed that the gB protein could form a trimeric structure. The purified gB protein was used to immunize mice, and the immune effect was evaluated by a challenge test. The results showed that the gB antigen induced a strong immune response in mice, with the serum-neutralizing antibody titer above 1:70. The lymphocyte stimulation index reached more than 1.29, and the level of (interferon gamma, IFN-γ) release was higher than 100 pg/mL. After immunization, mice were challenged with the virus at a dose of 104 TCID₅₀/mL, 200 μL per mouse, and the clinical protection rate was 100%. Immunohistochemistry, histopathological section, and tissue viral load results showed that the pathological damage and viral load in the gB-immunized group were significantly lower than those in the PBS group. In summary, the gB protein obtained in this study induced strong humoral and cellular immune responses in mice, laying a foundation for developing a recombinant gB protein subunit vaccine.
Animals
;
Mice
;
Baculoviridae/metabolism*
;
Viral Envelope Proteins/biosynthesis*
;
Herpesvirus 1, Suid/genetics*
;
Pseudorabies/immunology*
;
Swine
;
Pseudorabies Vaccines/genetics*
;
Antibodies, Viral/blood*
;
Insecta/cytology*
;
Mice, Inbred BALB C
;
Female
;
Viral Vaccines/immunology*
7.The aromatic scents of four plants in learning and memory of Drosophila melanogaster
Bryan Paul D. De Galicia ; Paul Mark B. Medina
Acta Medica Philippina 2024;58(3):47-54
Introduction:
Folkloric claims have surrounded essential oils, including their enhancement of learning and memory through inhalational exposure. Few studies in humans have shown a benefit in cognition, albeit incremental. However, this benefit may not be entirely attributable to the essential oil aroma but may be confounded by psychological associations. We investigated rosemary, peppermint, lemon, and coffee aromas in a learning and memory model of Drosophila melanogaster to eliminate this confounder.
Methods:
We screened for concentrations of the four treatments that are non-stimulatory for altered locomotory behavior in the flies. At these concentrations, we determined if they were chemoneutral (i.e., neither chemoattractant nor chemorepellent) to the flies. Learning and memory of the flies exposed to these aromas were determined using an Aversive Phototaxis Suppression (APS) assay.
Results:
The aromas of rosemary, peppermint, and lemon that did not elicit altered mobility in the flies were from dilute essential oil solutions that ranged from 0.2 to 0.5% v/v; whereas for the aroma in coffee, it was at a higher concentration of 7.5% m/v. At these concentrations, the aromas used were found to be chemoneutral towards the flies. We observed no improvement in both learning and memory in the four aromas tested. While a significant reduction (p < 0.05) in learning was observed when flies were treated with the aromas of rosemary, peppermint, and coffee, a significant reduction (p < 0.05) in memory was only observed in the peppermint aroma treatment.
Conclusion
This study demonstrated that in the absence of psychological association, the four aromas do not enhance learning and memory
Drosophila melanogaster
;
Learning
;
Memory
;
Rosmarinus
;
Mentha piperita
;
Citrus
;
Coffea
8.Effect of Garcinia binucao crude leaf extract supplementation on lifespan of Drosophila melanogaster chronically exposed to alcohol
Joanne Jennifer E. Tan ; Ourlad Alzeus G. Tantengco ; Nicholas Robert C. Tan ; Clyde E. Silverio ; Ana Denise V. Sison ; Joseph P. Sta. Maria Jr. ; Karol Ina G. Tablante ; Joyce Gillian A. Tiam-Lee ; Maria Concepcion C. Sison ; Paul Mark B. Medina
Acta Medica Philippina 2024;58(5):52-56
Background:
Consumption and abuse of alcohol remains a significant cause of concern worldwide. Furthermore, there is evidence of the association between chronic alcohol use and reduced life expectancy.
Objectives:
To study the effects of Garcinia binucao extract (GBE) supplementation on lifespan of Drosophila
melanogaster, in the presence or absence of chronic alcohol exposure.
Methods:
D. melanogaster was mass cultured and given GBE supplementation in high (1 mg/mL) and low (200 µg/mL) sublethal doses. D. melanogaster flies were divided into groups - with and without chronic alcohol exposure, and their respective lifespans were monitored.
Results:
In D. melanogaster without alcohol exposure, mean lifespan was highest in the control flies (38.15 days), followed by high-dose GBE (34.42 days), low-dose GBE (33.24 days), and DMSO (22.29 days). In D. melanogaster chronically exposed to alcohol, the longest mean lifespan was observed in flies treated with high-dose GBE (33.80 days), followed by low-dose GBE (33.63 days), the DMSO group (30.30), and the control group (29.65 days), but the differences were not statistically significant. Comparing groups with and without chronic alcohol exposure, the mean lifespan of the control group chronically exposed to alcohol significantly decreased by 9.51 days (p < 0.05). In GBE treatment groups, mean lifespan significantly decreased by 0.82 days in high-dose set-up (p < 0.05), and significantly increased by 0.39 days in the low-dose set-up (p < 0.05) upon chronic alcohol exposure.
Conclusion
Garcinia binucao extract supplementation ameliorated the observed reduction in lifespan of Drosophila melanogaster chronically exposed to alcohol.
Drosophila melanogaster
;
Longevity
9.Enhancing the expression level of human epidermal growth factor using the polyhedrin protein sequence of BmNPV.
Yuedong LI ; Xingyang WANG ; Shuohao LI ; Xiaofeng WU
Chinese Journal of Biotechnology 2024;40(11):4211-4218
Human epidermal growth factor (hEGF) can be applied in the treatment of surgical trauma (burns, scalds), tissue repair, skin moisturizing, beauty, skincare, etc. However, the low expression and high cost limit the application of hEGF. In order to improve the expression level of hEGF and reduce the production cost, considering the high expression of polyhedrin, this study fused a partial sequence of polyhedrin with hEGF and expressed the fused sequence by using a silkworm baculovirus expression vector system. In view of the small molecular weight of hEGF, we connected hEGF genes in series and optimized the codons to construct multiple fusion expression vectors by fusing different partial sequences of polyhedrin at the N-terminus. The results showed that through the above strategy, the protein expression level of hEGF was significantly increased. The expression vector containing three concatenated hEGF genes with optimized codons and fused with the sequence encoding 25 or 35 residues at the N-terminus of polyhedrin showed the highest expression level.
Humans
;
Epidermal Growth Factor/biosynthesis*
;
Genetic Vectors/genetics*
;
Recombinant Fusion Proteins/biosynthesis*
;
Animals
;
Bombyx/metabolism*
;
Occlusion Body Matrix Proteins/genetics*
;
Nucleopolyhedroviruses/genetics*
;
Amino Acid Sequence
10.Analysis of the impact of health management measures for entry personnel on imported Dengue fever in Guangdong Province, 2020-2022.
Xiao Hua TAN ; Ai Ping DENG ; Ying Tao ZHANG ; Min LUO ; Hui DENG ; Yu Wei YANG ; Jin Hua DUAN ; Zhi Qiang PENG ; Meng ZHANG
Chinese Journal of Epidemiology 2023;44(6):954-959
Objective: To explore the impact of health management measures for entry personnel (entry management measures) against COVID-19 on the epidemiological characteristics of imported Dengue fever in Guangdong Province from 2020 to 2022. Methods: Data of imported Dengue fever from January 1, 2016 to August 31, 2022, mosquito density surveillance from 2016 to 2021, and international airline passengers and Dengue fever annual reported cases from 2011 to 2021 in Guangdong were collected. Comparative analysis was conducted to explore changes in the epidemic characteristics of imported Dengue fever before the implementation of entry management measures (from January 1, 2016 to March 20, 2020) and after the implementation (from March 21, 2020 to August 31, 2022). Results: From March 21, 2020, to August 31, 2022, a total of 52 cases of imported Dengue fever cases were reported, with an imported risk intensity of 0.12, which were lower than those before implementation of entry management measures (1 828, 5.29). No significant differences were found in the characteristics of imported cases before and after implementation of entry management measures, including seasonality, sex, age, career, and imported countries (all P>0.05). 59.62% (31/52) of cases were found at the centralized isolation sites and 38.46% (20/52) at the entry ports. However, before implementation of entry management measures, 95.08% (1 738/1 828) of cases were found in hospitals. Among 51 cases who had provided entry dates, 82.35% (42/51) and 98.04% (50/51) of cases were found within seven days and fourteen days after entry, slightly higher than before implementation [(72.69%(362/498) and 97.59% (486/498)]. There was significant difference between the monthly mean values of Aedes mosquito larval density (Bretto index) from 2020 to 2021 and those from 2016 to 2019 (Z=2.83, P=0.005). There is a strong positive correlation between the annual international airline passengers volume in Guangdong from 2011 to 2021 and the annual imported Dengue fever cases (r=0.94, P<0.001), and a positive correlation also existed between the international passenger volume and the annual indigenous Dengue fever cases (r=0.72, P=0.013). Conclusions: In Guangdong, the entry management measures of centralized isolation for fourteen days after entry from abroad had been implemented, and most imported Dengue fever cases were found within fourteen days after entry. The risk of local transmission caused by imported cases has reduced significantly.
Animals
;
Humans
;
COVID-19
;
Aedes
;
Epidemics
;
China/epidemiology*
;
Dengue/epidemiology*


Result Analysis
Print
Save
E-mail