1.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
2.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
3.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
4.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
5.18F-FDOPA PET/CT in Oncology: Procedural Guideline by the KoreanSociety of Nuclear Medicine
Yong-Jin PARK ; Joon Ho CHOI ; Hyunjong LEE ; Seung Hwan MOON ; Inki LEE ; Joohee LEE ; Jang YOO ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):41-49
This guideline outlines the use of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for the diagnosis and management of neuroendocrine tumors, brain tumors, and other tumorous conditions. It provides detailed recommendations on patient preparation, imaging procedures, and result interpretation. Based on inter-national standards and adapted to local clinical practices, the guideline emphasizes safety, quality control, and the effec-tive application of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography for various tumors such as insulinomas, pheochromocytomas, and medullary thyroid carcinoma. It also addresses the use of premedication with carbidopa, fasting protocols, and optimal imaging techniques. The aim is to assist nuclear medicine professionals in delivering precise diagnoses, improving patient outcomes, and accommodating evolving medical knowl-edge and technology. This comprehensive document serves as a practical resource to enhance the accuracy, quality, and safety of 3,4-dihydroxy-6- 18F-fluoro-L-phenylalanine positron emission tomography / computed tomography in oncology.
6.Toxicological properties of Technekitty injection (Tc-99m) in diagnosing feline hyperthyroidism
Jae Cheong LIM ; So-Young LEE ; Eun Ha CHO ; Yu Mi JUNG ; Ki Hwan PARK ; Young Uk PARK ; Sung Soo NAM ; Tae Hoon LEE ; Jae Won LEE ; Yiseul CHOI ; Inki LEE ; Yeon CHAE ; Byeong-Teck KANG
Journal of Biomedical and Translational Research 2024;25(4):201-210
Following the previous study, which investigated the pharmacological properties of the Technekitty injection (Tc-99m), the toxicity of a single intravenous administration of the Technekittyinjection (Tc-99m) and the side effects that may occur at the diagnostic dose were confirmed.The Technekitty injection (Tc-99m) was administered intravenously once at a dose of 0, 0.67, 2.0, and 6.0 mCi/kg to 5 male and female rats per group. Mortality, general symptom obser-vation, and weight measurement were performed for 2 weeks, followed by observation of autopsy findings. There were no deaths, and no statistically significant weight change was observed. No abnormal systemic signs related to the Technekitty injection (Tc-99m) were observed. These results confirmed that Technekitty injection (Tc-99m) can be safely admin-istered intravenously at doses up to 6.0 mCi/kg. Additionally, technetium-99m at an average dose of 2 mCi (74 MBq) has been verified as a diagnostic dose without adverse effects, al-lowing the Technekitty injection (Tc-99m) to be used safely without side effects at this dosage.This study demonstrates that the Technekitty injection (Tc-99m) has a wide safety margin, supporting its potential for clinical application. Moreover, these findings align with the nonclin-ical safety standards for radiopharmaceuticals, reinforcing its utility in veterinary medicine.The Technekitty injection (Tc-99m) is expected to be applicable for clinical diagnosis as a vet-erinary drug in Korea.
7.Toxicological properties of Technekitty injection (Tc-99m) in diagnosing feline hyperthyroidism
Jae Cheong LIM ; So-Young LEE ; Eun Ha CHO ; Yu Mi JUNG ; Ki Hwan PARK ; Young Uk PARK ; Sung Soo NAM ; Tae Hoon LEE ; Jae Won LEE ; Yiseul CHOI ; Inki LEE ; Yeon CHAE ; Byeong-Teck KANG
Journal of Biomedical and Translational Research 2024;25(4):201-210
Following the previous study, which investigated the pharmacological properties of the Technekitty injection (Tc-99m), the toxicity of a single intravenous administration of the Technekittyinjection (Tc-99m) and the side effects that may occur at the diagnostic dose were confirmed.The Technekitty injection (Tc-99m) was administered intravenously once at a dose of 0, 0.67, 2.0, and 6.0 mCi/kg to 5 male and female rats per group. Mortality, general symptom obser-vation, and weight measurement were performed for 2 weeks, followed by observation of autopsy findings. There were no deaths, and no statistically significant weight change was observed. No abnormal systemic signs related to the Technekitty injection (Tc-99m) were observed. These results confirmed that Technekitty injection (Tc-99m) can be safely admin-istered intravenously at doses up to 6.0 mCi/kg. Additionally, technetium-99m at an average dose of 2 mCi (74 MBq) has been verified as a diagnostic dose without adverse effects, al-lowing the Technekitty injection (Tc-99m) to be used safely without side effects at this dosage.This study demonstrates that the Technekitty injection (Tc-99m) has a wide safety margin, supporting its potential for clinical application. Moreover, these findings align with the nonclin-ical safety standards for radiopharmaceuticals, reinforcing its utility in veterinary medicine.The Technekitty injection (Tc-99m) is expected to be applicable for clinical diagnosis as a vet-erinary drug in Korea.
8.Toxicological properties of Technekitty injection (Tc-99m) in diagnosing feline hyperthyroidism
Jae Cheong LIM ; So-Young LEE ; Eun Ha CHO ; Yu Mi JUNG ; Ki Hwan PARK ; Young Uk PARK ; Sung Soo NAM ; Tae Hoon LEE ; Jae Won LEE ; Yiseul CHOI ; Inki LEE ; Yeon CHAE ; Byeong-Teck KANG
Journal of Biomedical and Translational Research 2024;25(4):201-210
Following the previous study, which investigated the pharmacological properties of the Technekitty injection (Tc-99m), the toxicity of a single intravenous administration of the Technekittyinjection (Tc-99m) and the side effects that may occur at the diagnostic dose were confirmed.The Technekitty injection (Tc-99m) was administered intravenously once at a dose of 0, 0.67, 2.0, and 6.0 mCi/kg to 5 male and female rats per group. Mortality, general symptom obser-vation, and weight measurement were performed for 2 weeks, followed by observation of autopsy findings. There were no deaths, and no statistically significant weight change was observed. No abnormal systemic signs related to the Technekitty injection (Tc-99m) were observed. These results confirmed that Technekitty injection (Tc-99m) can be safely admin-istered intravenously at doses up to 6.0 mCi/kg. Additionally, technetium-99m at an average dose of 2 mCi (74 MBq) has been verified as a diagnostic dose without adverse effects, al-lowing the Technekitty injection (Tc-99m) to be used safely without side effects at this dosage.This study demonstrates that the Technekitty injection (Tc-99m) has a wide safety margin, supporting its potential for clinical application. Moreover, these findings align with the nonclin-ical safety standards for radiopharmaceuticals, reinforcing its utility in veterinary medicine.The Technekitty injection (Tc-99m) is expected to be applicable for clinical diagnosis as a vet-erinary drug in Korea.
9.Assessment of right ventricular systolic function using speckle tracking strain imaging in patients with severe tricuspid regurgitation: a validation study with cardiac magnetic resonance
Inki MOON ; Soongu KWAK ; MinKwan KIM ; Seung‑Pyo LEE ; Hyung‑Kwan KIM ; Yong‑Jin KIM ; Jun‑Bean PARK
Journal of Cardiovascular Imaging 2024;32(1):22-
Background:
Right ventricular (RV) systolic dysfunction is an established prognostic factor in patients with severe tri‑ cuspid regurgitation (TR). However, accurate assessment of RV systolic function using conventional echocardiography remains challenging. We investigated the accuracy of strain measurement using speckle tracking echocardiography (STE) for evaluating RV systolic function in patients with severe TR.
Methods:
We included consecutive patients with severe TR who underwent echocardiography and cardiac magnetic resonance imaging (CMR) within 30 days between 2011 and 2023. Two-dimensional STE was used to measure RV free wall longitudinal strain (RVFWLS) and global longitudinal strain (RVGLS). These values were compared with the RV ejection fraction (RVEF) from CMR. RV systolic dysfunction was defined as a CMR-derived RVEF < 35%.
Results:
A total of 87 patients with severe TR were identified during the study period. Among echocardiographic RV strain measurements, RVFWLS was the best correlate of CMR-derived RVEF (r = –0.37, P < 0.001), followed by RVGLS (r = –0.27, P = 0.012). Receiver operating characteristic (ROC) curve analysis revealed that RVFWLS provided better dis‑ crimination of RV systolic dysfunction, yielding an area under the ROC curve (AUC) of 0.770 (95% confidence interval [CI], 0.696–0.800) than RV fractional area change (AUC, 0.615; 95% CI, 0.500–0.859).
Conclusions
In patients with severe TR, STE-derived RVFWLS showed the best correlation with RVEF on CMR and dis‑ played superior discrimination of RV systolic dysfunction compared with the RV fractional area change. This study suggests the potential usefulness of STE in assessing RV systolic function in this population.
10.Temporal Trend of the Incidence and Characteristics of Renal Infarction:Korean Nationwide Population Study
Dong-Eon KIM ; Inki MOON ; Suyeong PARK ; Minae PARK ; Sojeong PARK ; Seong Soon KWON ; Min Gyu KONG ; Hyun Woo PARK ; Hyung Oh CHOI ; Hye-Sun SEO ; Yoon Haeng CHO ; Nae Hee LEE ; Jon SUH
Journal of Korean Medical Science 2023;38(31):e239-
Background:
Large-scale studies about epidemiologic characteristics of renal infarction (RI) are few. In this study, we aimed to analyze the incidence and prevalence of RI with comorbidities in the South Korean population.
Methods:
We investigated the medical history of the entire South Korean adult population between 2013 and 2019 using the National Health Insurance Service database (n = 51,849,591 in 2019). Diagnosis of RI comorbidities were confirmed with International Classification of Disease, Tenth Revision, Clinical Modification codes. Epidemiologic characteristics, distribution of comorbidities according to etiologic mechanisms, and trend of antithrombotic agents were estimated.
Results:
During the 7-years, 10,496 patients were newly diagnosed with RI. The incidence rate increased from 2.68 to 3.06 per 100,000 person-years during the study period.The incidence rate of RI increased with age peaking in the 70s with 1.41 times male predominance. The most common comorbidity was hypertension, followed by dyslipidemia and diabetes mellitus. Regarding etiologic risk factor distribution, high embolic risk group, renovascular disease group, and hypercoagulable state group accounted for 16.6%, 29.1%, and 13.7% on average, respectively. For the antithrombotic treatment of RI, the prescription of antiplatelet agent gradually decreased from 17.0% to 13.0% while that of anticoagulation agent was maintained around 35%. The proportion of non-vitamin K antagonist oral anticoagulants remarkably increased from only 1.4% to 17.6%.
Conclusion
Considering the progressively increasing incidence of RI and high prevalence of coexisting risk factors, constant efforts to raise awareness of the disease are necessary. The current epidemiologic investigation of RI would be the stepping-stone to establishing future studies about clinical outcomes and optimal treatment strategies.

Result Analysis
Print
Save
E-mail