1.Effects of chicken interferon-γ and interleukin-2 on cytokines related to Th1 cell differentiation in peripheral blood.
Ling LIU ; Pengtao JIAO ; Meng WANG ; Jing LI ; Lei SUN ; Wenhui FAN ; Wenjun LIU
Chinese Journal of Biotechnology 2022;38(9):3329-3343
This paper aims to explore the effects of chicken interferon-γ (ChIFN-γ) and interleukin-2 (ChIL-2) on type 1 helper (Th1) T lymphocyte differentiation. To be specific, ChIFN-γ and ChIL-2 were first expressed in Escherichia coli competent cells and then purified by Ni-NTA affinity chromatography. Different concentration of ChIFN-γ and ChIL-2 were employed to stimulate the lymphocytes in chicken peripheral blood which had been activated by concanavalin A (Con A), and the mRNA levels of cytokines related to Th1 cell differentiation were detected by real-time quantitative PCR (RT-qPCR). The results showed that both ChIFN-γ and ChIL-2 can significantly up-regulate mRNA levels of cytokines related to Th1 cell differentiation and the optimal concentration was 12.5 μg/mL and 25.0 μg/mL, respectively. In addition, specific-pathogen-free (SPF) chickens were immunized with ChIL-2 or ChIFN-γ together with H9N2 vaccine, or H9N2 vaccine alone by oral administration or intramuscular injection, respectively. The mRNA levels of cytokines related to Th1 cell differentiation were detected after immunization. The results showed that ChIFN-γ and ChIL-2 significantly up-regulated the mRNA levels of cytokines related to Th1 cell differentiation induced by H9N2 vaccine compared with H9N2 vaccine alone, and that the intramuscular injection was better than oral administration. In this study, we verified that ChIFN-γ and ChIL-2 can significantly enhance mRNA levels of cytokines related to Th1 cell differentiation induced by ConA or H9N2 vaccine in vitro and in vivo. The results of this study can lay a theoretical basis for using ChIFN-γ and ChIL-2 as vaccine adjuvants.
Animals
;
Cell Differentiation
;
Chickens
;
Concanavalin A
;
Cytokines/genetics*
;
Influenza A Virus, H9N2 Subtype/genetics*
;
Interferon-gamma/metabolism*
;
Interleukin-2/genetics*
;
RNA, Messenger
2.Isolation and Identification of a Quail-origin H9N2 Subtype of The Influenza Virus and Its Biologic Characterization.
Yang YU ; Weiying SI ; Zhuangchuan YUAN ; Yan YAN ; Jiyong ZHOU
Chinese Journal of Virology 2016;32(1):70-76
A quail-origin subtype of the influenza virus was isolated from a human-infecting H7N9 subtype of the avian influenza virus found in a live poultry market and was given the name A/Quail/Hangzhou/1/ 2013 (H9N2). We analyzed the whole genome of this virus and its biologic characteristics. Sequence analyses suggested that the: HA and NS genes belonged to a CK/BJ/1/94-like lineage; NA, NP, PA and PB1 genes belonged to a SH/F/98-like lineage; M and PB2 genes belonged to a G1-like lineage. Analyses of key amino acids showed that the cleavage site in HA protein was PSRSSR ↓ GL, and that the HA protein had a human receptor-binding site with Leu226. Deletion of amino acids 69 - 73 was detected in the stalk of NA protein, the M2 protein had an Asn31 mutation, and the NS1 protein had two mutations at Ser42, Ala149. The intravenous pathogenicity of this virus was 0.36. A study in chickens suggested that all inoculated birds shed the virus from the trachea and cloaca on the third day post-infection (p. i. ) until 11 days. All chickens that had direct contact shed the virus on the second day p. i. until 8 days. Results of virus reisolation suggested that lung and tracheal tissues could shed the virus in 5 days, whereas the other organs could shed the virus in 3 days. These results suggest that this virus strain is H9N2 subtype LPAIV, whose lineage is prevalent in mainland China. This research provides evidence on how to monitor and prevent the H9N2 subtype of the avian influenza virus.
Animals
;
Chick Embryo
;
Chickens
;
China
;
Genotype
;
Influenza A Virus, H9N2 Subtype
;
classification
;
genetics
;
isolation & purification
;
Influenza in Birds
;
virology
;
Phylogeny
;
Quail
;
virology
3.Isolation and phylogenetic analysis of hemagglutinin gene of H9N2 influenza viruses from chickens in South China from 2012 to 2013.
Han Qin SHEN ; Zhuan Qiang YAN ; Fan Gui ZENG ; Chang Tao LIAO ; Qing Feng ZHOU ; Jian Ping QIN ; Qing Mei XIE ; Ying Zuo BI ; Feng CHEN
Journal of Veterinary Science 2015;16(3):317-324
As part of our ongoing influenza surveillance program in South China, 19 field strains of H9N2 subtype avian influenza viruses (AIVs) were isolated from dead or diseased chicken flocks in Guangdong province, South China, between 2012 and 2013. Hemagglutinin (HA) genes of these strains were sequenced and analyzed and phylogenic analysis showed that 12 of the 19 isolates belonged to the lineage h9.4.2.5, while the other seven belonged to h9.4.2.6. Specifically, we found that all of the viruses isolated in 2013 belonged to lineage h9.4.2.5. The lineage h9.4.2.5 viruses contained a PSRSSRdownward arrowGLF motif at HA cleavage site, while the lineage h9.4.2.6 viruses contained a PARSSRdownward arrowGLF at the same position. Most of the isolates in lineage h9.4.2.5 lost one potential glycosylation site at residues 200-202, and had an additional one at residues 295-297 in HA1. Notably, 19 isolates had an amino acid exchange (Q226L) in the receptor binding site, which indicated that the viruses had potential affinity of binding to human like receptor. The present study shows the importance of continuing surveillance of new H9N2 strains to better prepare for the next epidemic or pandemic outbreak of H9N2 AIV infections in chicken flocks.
Animals
;
*Chickens
;
China
;
Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*genetics/metabolism
;
Influenza A Virus, H9N2 Subtype/*genetics/metabolism
;
Influenza in Birds/virology
;
Phylogeny
;
Poultry Diseases/*virology
;
Sequence Analysis, RNA/veterinary
4.H9N2 influenza virus in China: a cause of concern.
Protein & Cell 2015;6(1):18-25
The recent human infection with avian influenza virus revealed that H9N2 influenza virus is the gene donor for H7N9 and H10N8 viruses infecting humans. The crucial role of H9N2 viruses at the animal-human interface might be due to the wide host range, adaptation in both poultry and mammalian, and extensive gene reassortment. As the most prevalent subtype of influenza viruses in chickens in China, H9N2 also causes a great economic loss for the poultry industry, even under the long-term vaccination programs. The history, epidemiology, biological characteristics, and molecular determinants of H9N2 influenza virus are reviewed in this paper. The contribution of H9N2 genes, especially RNP genes, to the infection of humans needs to be investigated in the future.
Animals
;
Chickens
;
virology
;
China
;
epidemiology
;
Humans
;
Influenza A Virus, H7N9 Subtype
;
genetics
;
Influenza A Virus, H9N2 Subtype
;
genetics
;
immunology
;
physiology
;
Influenza in Birds
;
epidemiology
;
transmission
;
virology
;
Influenza, Human
;
epidemiology
;
transmission
;
virology
;
Vaccination
;
Viral Proteins
;
classification
;
metabolism
5.Complete genome phylogenetic analysis of five H9N2 avian influenza viruses isolated from poultry flocks in Qinghai lake region.
Lin-Yu LIU ; Shuang-Ying JIANG ; Li-Jie WANG ; Hu YI ; Sheng-Cang ZHAO ; Zhi-Jian TANG ; Cui-Ling XU ; Jie DONG ; Rong-Bao GAO ; Ye ZHANG ; Shu-Mei ZOU ; Xiao-Dan LI ; Lei YANG ; Jing YANG ; Tao CHEN ; Yue-Long SHU
Chinese Journal of Virology 2014;30(2):109-118
Five H9N2 avian influenza virus strains were isolated from the environmental samples in live poultry market in Qinghai Lake region from July to September, 2012. To evaluate the phylogenetic characteristics of these H9N2 isolates, the eight gene segments were amplified by RT-PCR and sequenced. The phylogenetic and molecular characteristics of the five strains were analyzed. The results showed that the HA genes of five strains shared 93. 2%-99. 1% nucleotide identities with each other, and the NA genes shared 94. 5%-99. 8% nucleotide identities. The HA cleavage site sequence of the A/environment/qinghai/ 017/2012 isolate was PSKSSRGLF, and the HA cleavage site sequences of the other four strains were all PSRSSRGLF. The HA receptor-binding site had the Q226L mutation. The M1 gene segment had the N30D and T215A mutations. The phylogenetic analysis showed that the five strains were similar to the virus A/chicken/Hunan/5260/2005 (H9N2) isolated in Hunan Province, China and were reassortant genotype viruses; the HA, NA, and NS genes belonged to the Y280-like lineage; the MP gene belonged to the G1-like lineage; the NP, PB1, PB2, and PA genes belonged to the F98-like lineage.
Animals
;
China
;
Genome, Viral
;
Genotype
;
Influenza A Virus, H9N2 Subtype
;
classification
;
genetics
;
isolation & purification
;
Influenza in Birds
;
virology
;
Molecular Sequence Data
;
Phylogeny
;
Poultry
;
Poultry Diseases
;
virology
;
Viral Proteins
;
genetics
6.Continuous reassortments with local chicken H9N2 virus underlie the human-infecting influenza A (H7N9) virus in the new influenza season, Guangdong, China.
Wenbao QI ; Weifeng SHI ; Wei LI ; Lihong HUANG ; Huanan LI ; Ying WU ; Jinghua YAN ; Peirong JIAO ; Baoli ZHU ; Juncai MA ; George F GAO ; Ming LIAO ; Di LIU
Protein & Cell 2014;5(11):878-882
Animals
;
Asian Continental Ancestry Group
;
Chickens
;
China
;
epidemiology
;
Cytokines
;
metabolism
;
Genetic Variation
;
Genotype
;
Humans
;
Influenza A Virus, H7N9 Subtype
;
classification
;
genetics
;
pathogenicity
;
Influenza A Virus, H9N2 Subtype
;
genetics
;
Influenza in Birds
;
transmission
;
virology
;
Influenza, Human
;
ethnology
;
transmission
;
virology
;
Mice, Inbred BALB C
;
Molecular Sequence Data
;
Orthomyxoviridae Infections
;
metabolism
;
mortality
;
virology
;
Phylogeny
;
Seasons
;
Survival Rate
;
Virulence
;
genetics
7.Avian influenza virus subtype H9N2 replicates in human lung tissues.
Zeng-Feng ZHANG ; Xiao-Hui FAN ; Xiao-Yan CHEN ; An-Lin FENG ; Li YANG
Chinese Journal of Virology 2013;29(2):206-210
Avian influenza virus subtype H9N2 has been circulating in multiple terrestrial birds and repeatedly infecting mammals, including swines and humans to pose a significant threat to public health. The cross-species infection of human, replication activity and tissue tropism of avian influenza virus H9N2 was evaluated in this study. The results showed that surgically removed human lung tissue samples were infected ex vivo by avian influenza virus subtype H9N2 (Ck/GX/1875/04, Ck/GX/187/05) and seasonal human influenza virus H3N2 (A/ST/602/05). Examination of nucleoprotein expression replication in the infected human lung tissue samples showed that the replication of avian influenza virus H9N2 and seasonal human influenza virus H3N2 were mainly prevalent in alveolar epithelial cells, respiratory bronchiole epithelial cells and bronchial epithelial cells. Double-immunostaining for viral antigens and cellular markers indicated that avian influenza virus subtype H9N2 replicated in type 2 alveolar epithelial cells. These findings suggest that the H9N2 virus may be better adapted to the human host and replicates efficiently in human lung epithelial cells. Moreover, H9N2 avian influenza virus repeatedly infecting human, may favor gene evolution and the potential emergence of pandemic influenza virus.
Animals
;
Epithelial Cells
;
virology
;
Humans
;
Influenza A Virus, H3N2 Subtype
;
genetics
;
physiology
;
Influenza A Virus, H9N2 Subtype
;
genetics
;
isolation & purification
;
physiology
;
Influenza, Human
;
virology
;
Lung
;
cytology
;
virology
;
RNA-Binding Proteins
;
genetics
;
metabolism
;
Viral Core Proteins
;
genetics
;
metabolism
;
Virus Replication
8.Genetic analysis of polymerase complex (PA, PB1 and PB2) genes of H9N2 avian influenza viruses from Iran (1999 to 2009).
Masoud SOLTANIALVAR ; Reza GOODARZI ; Farshad AKBARNEJAD
Asian Pacific Journal of Tropical Biomedicine 2012;2(11):858-862
OBJECTIVETo determine the molecular characterization of Polymerase complex (PA, PB1 and PB2) genes of H9N2 avian influenza viruses and the genetic relationship of Iranian H9N2 viruses and other Asian viruses.
METHODSThe Polymerase complex (PA, PB1 and PB2) genes from seven isolates of H9N2 viruses isolated from commercial chickens in Iran during 2008-2009 were amplified (by RT-PCR method) and sequenced. Nucleotide sequences (Open Reading Frame: orf) of the PA, PB1 and PB2 genes were used for phylogenetic tree construction.
RESULTSMost PB2 and PA genes of the H9N2 viruses isolated in 2008-2009 belonged to the unknown avian sublineage which grouped with the 2004 Pakistani H7N3 viruses. The PB1 genes of Iranian viruses indicated greater genetic diversity and shared a high level of similarity to PB1 genes from either H5 or H7 subtypes with compared to established H9N2 Eurasian sublineages.
CONCLUSIONSOur findings demonstrated that the H9N2 viruses in Iran exhibit striking reassortment which has led to the generation of new genotypes.
Animals ; Chickens ; virology ; Ducks ; virology ; Genotyping Techniques ; Influenza A Virus, H9N2 Subtype ; classification ; genetics ; Influenza in Birds ; virology ; Iran ; Pakistan ; RNA Replicase ; genetics ; Viral Proteins ; genetics
9.Analysis on variation of hemagglutinin genes of sixteen H9N2 subtype avian influenza viruses isolated in Shandong area.
Li-Li WU ; You-Xiang DIAO ; Xiao-Jun JU ; Chun-Mei YU ; Jing-Teng CUI
Chinese Journal of Virology 2012;28(3):272-277
In order to explore the genetic mutations of the H9N2 subtype avian influenza viruses isolated in Shandong, sixteen avian influenza virus subtype H9N2 were isolated from different areas of Shandong Province. The complete HA fragments of the viruses were amplified by RT-PCR and the sequences were analyzed on homology and heredity evolution after the cloning and sequencing of the products. The results showed that the amino acid motif of cleavage sites for all the sixteen virus in the HA gene were RSSR decrease GLF, which was consistent with the characterization of the LPAIV. Seven to nine potential glycosylation sites were found during the analysis and the receptor binding sites were relatively conservative except the 198 site. The Leucine(L) at the amino acid position 234 in the HA genes of all isolates indicated the potential of binding with SAalpha,2-6 receptor of mammals. Homology analysis showed that the homology of HA nucleotide and amino acid sequences was 96.3%-99.9% and 97.1%-99.6% for different strains. They belonged to a branch of the A/Duck/Hong Kong/Y280/97 in the phylogenetic tree.
Amino Acid Sequence
;
Animals
;
Birds
;
China
;
Genetic Variation
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
Influenza A Virus, H9N2 Subtype
;
chemistry
;
classification
;
genetics
;
isolation & purification
;
Influenza in Birds
;
virology
;
Molecular Sequence Data
;
Phylogeny
;
Sequence Homology, Amino Acid
10.Sequence comparison of the hemagglutinin gene of the duck-origin H9N2 subtype avian influenza viruses.
Chun-He WAN ; Guang-Hua FU ; Long-Fei CHENG ; Shao-Hua SHI ; Hong-Mei CHEN ; Chun-Xiang PENG ; Fang LIN ; Jian-Sheng LIN ; Yu HUANG
Chinese Journal of Virology 2012;28(2):158-164
To demonstrate the phylogenetic evolution, the molecular characteristics of the motif of HA protein cleavage site and the varieties at the receptor binding sites of the hemagglutinin gene of the duck-origin H9N2 subtype avian influenza viruses, sequence alignment and phylogenetic analysis were performed by MEGA 4.1 Neighbor-Joining method.. The results revealed that the duck-origin H9N2 AIV viruses originated from CK/BJ/1/94-like and North-Ame-like, all the duck-origin H9N2 AIV viruses from mainland China belonged to CK/BJ/1/94-like and formed multiple genotypes through complicated re-assortment, while other duck-origin H9N2 AIV, isolated from other countries in Aisa, American and European such as Korea, Japan, Alberta, Austria, Switzerland, Iran, belonged to the North-Ame-like phylogenetic lineage. The amino acids at positions 183, 190, and 226 of the receptor binding sites of North-Ame-like group isolates had highly conserved H, E and Q respectively. In contrast with duck-origin H9N2 AIV viruses isolates from mainland China, the amino acids had N at positions 183, A, T, or V at 190, L or Q at 226, which was the same as the chicken-origin H9N2 AIV from mainland China. Most newly isolated chicken-origin H9N2 AIV in Fujian Province in Southern China had L at position 226 emphasized the higher risk of cross-infection between the chicken-origin and duck-origin H9N2 AIV in China.
Animals
;
China
;
Ducks
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
Influenza A Virus, H9N2 Subtype
;
chemistry
;
classification
;
genetics
;
isolation & purification
;
Influenza A virus
;
chemistry
;
classification
;
genetics
;
Influenza in Birds
;
virology
;
Molecular Sequence Data
;
Phylogeny
;
Poultry Diseases
;
virology
;
Sequence Alignment

Result Analysis
Print
Save
E-mail