1.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
2.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
3.Phylogenetic and pathogenicity analysis of influenza B virus strain B/Guangxi-Jiangzhou/1352/2018.
Qingxin MENG ; Pengtao JIAO ; Lei SUN ; Dayan WANG ; Tingrong LUO ; Wenhui FAN ; Wenjun LIU
Chinese Journal of Biotechnology 2022;38(9):3390-3405
Influenza B virus (IBV) is more likely to cause complications than influenza A virus (IAV) and even causes higher disease burden than IAV in a certain season, but IBV has received less attention. In order to analyze the genetic evolution characteristics of the clinical strain IBV (B/Guangxi-Jiangzhou/1352/2018), we constructed genetic evolution trees and analyzed the homology and different amino acids of hemagglutinin and neuraminidase referring to the vaccine strains recommended by World Health Organization (WHO). We found that strain B/Guangxi-Jiangzhou/1352/2018 was free of interlineage reassortment and poorly matched with the vaccine strain B/Colorado/06/2017 of the same year. We also determined the median lethal dose (LD50) and the pathogenicity of strain B/Guangxi-Jiangzhou/1352/2018 in mice. The results showed that the LD50 was 105.9 TCID50 (median tissue culture infective dose), the IBV titer in the lungs reached peak 1 d post infection and the mRNA level of the most of inflammatory cytokines in the lungs reached peak 12 h post infection. The alveoli in the lungs were severely damaged and a large number of inflammatory cells were infiltrated post infection. The study demonstrated that the clinical strain IBV (B/Guangxi-Jiangzhou/1352/2018) could infect mice and induce typical lung inflammation. This will facilitate the research on the pathogenesis and transmission mechanism of IBV, and provide an ideal animal model for evaluation of new vaccines, antiviral and anti-inflammatory drug.
Amino Acids/genetics*
;
Animals
;
Antiviral Agents/pharmacology*
;
China
;
Cytokines/metabolism*
;
Hemagglutinins/metabolism*
;
Humans
;
Influenza B virus/pathogenicity*
;
Influenza, Human/virology*
;
Mice
;
Neuraminidase/genetics*
;
Orthomyxoviridae Infections/virology*
;
Phylogeny
;
RNA, Messenger/metabolism*
;
Virulence/genetics*
4.Interferon-induced Transmembrane Protein 3 Prevents Acute Influenza Pathogenesis in Mice.
Qiang SUN ; Na LEI ; Jian LU ; Rong Bao GAO ; Zi LI ; Li Qi LIU ; Ying SUN ; Jun Feng GUO ; Da Yan WANG ; Yue Long SHU
Biomedical and Environmental Sciences 2020;33(5):295-305
Objective:
Interferon-induced transmembrane protein 3 (IFITM3) is an important member of the IFITM family. However, the molecular mechanisms underlying its antiviral action have not been completely elucidated. Recent studies on IFITM3, particularly those focused on innate antiviral defense mechanisms, have shown that IFITM3 affects the body's adaptive immune response. The aim of this study was to determine the contribution of IFITM3 proteins to immune control of influenza infection .
Methods:
We performed proteomics, flow cytometry, and immunohistochemistry analysis and used bioinformatics tools to systematically compare and analyze the differences in natural killer (NK) cell numbers, their activation, and their immune function in the lungs of -/- and wild-type mice.
Results:
-/- mice developed more severe inflammation and apoptotic responses compared to wild-type mice. Moreover, the NK cell activation was higher in the lungs of -/- mice during acute influenza infection.
Conclusions
Based on our results, we speculate that the NK cells are more readily activated in the absence of IFITM3, increasing mortality in -/- mice.
Acute Disease
;
Animals
;
Disease Models, Animal
;
Female
;
Humans
;
Influenza, Human
;
virology
;
Male
;
Membrane Proteins
;
genetics
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Orthomyxoviridae Infections
;
veterinary
;
virology
;
Rodent Diseases
;
virology
5.Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells.
Myungguen CHUNG ; Soo Young CHO ; Young Seek LEE
Biomolecules & Therapeutics 2018;26(3):290-297
We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known ‘gp120 pathway in HIV.’ This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of ‘Drug Metabolism Enzymes (DMEs).’ The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.
Apoptosis
;
Epithelial Cells*
;
Gene Expression Regulation
;
High-Throughput Nucleotide Sequencing
;
Humans*
;
Influenza A Virus, H1N1 Subtype
;
Influenza, Human*
;
Lung*
;
Metabolism
;
RNA
;
Seasons
6.Influencing factors for duration of viral nucleic acid shedding in children with influenza A.
Gao-Feng ZHOU ; Hong-Mei WANG ; Rui-Mu ZHANG ; Ji-Kui DENG
Chinese Journal of Contemporary Pediatrics 2016;18(12):1269-1271
OBJECTIVETo investigate the features and duration of viral nucleic acid shedding in children with influenza A.
METHODSThe clinical data of 90 children with influenza A with positive influenza A virus nucleic acid in nasopharyngeal swab detected by PCR were collected, and these children were divided into simple influenza A group (n=10), influenza A-pneumonia group (n=61), influenza A-nervous system damage group (n=10), and influenza A-underlying disease group (n=9). A retrospective analysis was performed for clinical features, treatment process, duration of viral nucleic acid shedding, and prognosis.
RESULTSThe most common symptoms in these children were fever (89/90, 99%), cough (89/90, 99%), running nose (69/90, 77%), shortness of breath (26/90, 29%), and myalgia (23/90, 26%). The mean duration of viral nucleic acid shedding in 90 children was 9.4±2.9 days. The simple influenza A group had a significantly shorter duration of viral nucleic acid shedding than the influenza A-pneumonia, influenza A-nervous system damage, and influenza A-underlying disease groups (p<0.05), while there were no significant differences between the influenza A-pneumonia, influenza A-nervous system damage, and influenza A-underlying disease groups (p>0.05). The children who received antiviral therapy within 48 hours after disease onset had significantly shorter duration of viral nucleic acid shedding and time to body temperature recovery than those who received antiviral therapy more than 48 hours after disease onset (p<0.05). Of all the children with body temperature recovery, 83% still tested positive for viral nucleic acid.
CONCLUSIONSComplications, underlying diseases, and timing of antiviral therapy are influencing factors for the duration of influenza A virus nucleic acid shedding, and whether body temperature returns to normal cannot be used to decide whether to continue antiviral therapy.
Child ; Child, Preschool ; Female ; Fever ; etiology ; Humans ; Infant ; Influenza A virus ; isolation & purification ; Influenza, Human ; virology ; Male ; Nucleic Acids ; metabolism ; Retrospective Studies ; Time Factors ; Virus Shedding
7.Genotyping Influenza Virus by Next-Generation Deep Sequencing in Clinical Specimens.
Moon Woo SEONG ; Sung Im CHO ; Hyunwoong PARK ; Soo Hyun SEO ; Seung Jun LEE ; Eui Chong KIM ; Sung Sup PARK
Annals of Laboratory Medicine 2016;36(3):255-258
Rapid and accurate identification of an influenza outbreak is essential for patient care and treatment. We describe a next-generation sequencing (NGS)-based, unbiased deep sequencing method in clinical specimens to investigate an influenza outbreak. Nasopharyngeal swabs from patients were collected for molecular epidemiological analysis. Total RNA was sequenced by using the NGS technology as paired-end 250 bp reads. Total of 7 to 12 million reads were obtained. After mapping to the human reference genome, we analyzed the 3-4% of reads that originated from a non-human source. A BLAST search of the contigs reconstructed de novo revealed high sequence similarity with that of the pandemic H1N1 virus. In the phylogenetic analysis, the HA gene of our samples clustered closely with that of A/Senegal/VR785/2010(H1N1), A/Wisconsin/11/2013(H1N1), and A/Korea/01/2009(H1N1), and the NA gene of our samples clustered closely with A/Wisconsin/11/2013(H1N1). This study suggests that NGS-based unbiased sequencing can be effectively applied to investigate molecular characteristics of nosocomial influenza outbreak by using clinical specimens such as nasopharyngeal swabs.
Databases, Genetic
;
Genotype
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Influenza A Virus, H1N1 Subtype/classification/*genetics/isolation & purification
;
Influenza, Human/diagnosis/*virology
;
Nasopharynx/*virology
;
Nucleic Acid Amplification Techniques
;
Phylogeny
;
RNA, Viral/analysis/metabolism
;
Sequence Analysis, RNA
;
Viral Proteins/genetics
8.Screening and evaluation of commonly-used anti-influenza Chinese herbal medicines based on anti-neuraminidase activity.
Xue HAN ; Ding-Kun ZHANG ; Yu-Ming GUO ; Wu-Wen FENG ; Qin DONG ; Cong-En ZHANG ; Yong-Feng ZHOU ; Yan LIU ; Jia-Bo WANG ; Yan-Ling ZHAO ; Xiao-He XIAO ; Ming YANG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(10):794-800
Anti-influenza Chinese herbal medicines (anti-flu CHMs) have advantages in preventing and treating influenza virus infection. Despite various data on antiviral activities of some anti-flu CHMs have been reported, most of them could not be compared using the standard evaluation methods for antiviral activity. This situation poses an obstacle to a wide application of anti-flu CHMs. Thus, it was necessary to develop an evaluation method to estimate antiviral activities of anti-flu CHMs. In the present study, we searched for anti-flu CHMs, based on clinic usage, to select study objects from commonly-used patented anti-flu Chinese medicines. Then, a neuraminidase-based bioassay, optimized and verified by HPLC method by our research group, was adopted to detect antiviral activities of selected 26 anti-flu CHMs. Finally, eight of these herbs, including Coptidis Rhizoma, Isatidis Folium, Lonicerae Flos, Scutellaria Radix, Cyrtomium Rhizome, Houttuynia Cordata, Gardeniae Fructus, and Chrysanthemi Indici Flos, were shown to have strong antiviral activities with half maximal inhibitory concentration (IC) values being 2.02 to 6.78 mg·mL (expressed as raw materials). In contrast, the IC value of positive control peramivir was 0.38 mg·mL. Considering the extract yields of CHMs, the active component in these herbs may have a stronger antiviral activity than peramivir, suggesting that these herbs could be further researched for active compounds. Moreover, the proposed neuraminidase-based bioassay was high-throughput and simple and could be used for evaluation and screening of anti-flu CHMs as well as for their quality control.
Antiviral Agents
;
chemistry
;
pharmacology
;
Drug Evaluation, Preclinical
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Enzyme Inhibitors
;
chemistry
;
pharmacology
;
Humans
;
Influenza, Human
;
drug therapy
;
virology
;
Neuraminidase
;
antagonists & inhibitors
;
metabolism
;
Orthomyxoviridae
;
drug effects
;
enzymology
;
physiology
;
Viral Proteins
;
antagonists & inhibitors
;
metabolism
9.Analysis of HA and NA Genes of Influenza A H1N1 Virus in Yunnan Province during 2009-2014.
Juan LI ; Xiaonan ZHAO ; Yihui CAO ; Deming NING ; Xiaoqing FU ; Wen XU
Chinese Journal of Virology 2015;31(6):674-678
To analyze influenza pathogen spectrum in Yunnan province during 2009-2014 years, and analyze HA and NA genes of influenza A H1N1. Analysis was made on the monitoring date of influenza cases in Yunnan province in recent 6 years, 23 strains of influenza virus of HA and NA gene was sequenced and analyzed by MEGA 5 software to construct phylogenetic tree. 4 times of influenza AH1N1 epidemic peak were monitored from 2009-2014 years in Yunnan Province, as the nucleic acid detection results of influenza A H1N1 accounted for 28.8% of the total. The sequencing result showed that HA and NA gene were divided into 3 groups, one was detected with H275Y mutation strains. Influenza A H1N1 is one of the important subtypes in Yunnan province and their genes have divided into three branches during the period of 2009-2014 years, the vast majority of influenza a H1N1 are still sensitive to neuraminidase inhibitors.
China
;
epidemiology
;
Hemagglutinin Glycoproteins, Influenza Virus
;
genetics
;
metabolism
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
classification
;
enzymology
;
genetics
;
isolation & purification
;
Influenza, Human
;
epidemiology
;
virology
;
Molecular Sequence Data
;
Mutation
;
Neuraminidase
;
genetics
;
metabolism
;
Phylogeny
;
Viral Proteins
;
genetics
;
metabolism
10.Research Progress in the Function of SUMOylation during Infection by the Influenza Virus.
Huimin LIU ; Wenqing LI ; Lijuan SU ; Guozhi ZHANG ; Yan LI ; Xiao LI ; Hongtao CHANG
Chinese Journal of Virology 2015;31(5):560-564
The influenza virus has evolved numerous mechanisms to overcome host defenses for its benefit. It can also manipulate the immune system to stop it monitoring and clearing the virus. Small ubiquitin-like modifier (SUMO)ylation is emerging as a key post-translational modification that plays an important part in virus replication. This brief review focuses on recent findings on the roles of SUMOylation during infection by the influenza virus. As such, it will aid understanding of the mechanism of action of infection by the influenza virus, and help to provide new strategies for anti-viral treatment.
Animals
;
Humans
;
Influenza, Human
;
virology
;
Orthomyxoviridae
;
genetics
;
metabolism
;
Sumoylation
;
Viral Proteins
;
genetics
;
metabolism
;
Virus Replication

Result Analysis
Print
Save
E-mail