1.Pediatric inflammatory bowel disease in mother‒child pairs: clinical risk factors and gut microbiota characteristics.
Cunzheng ZHANG ; Ruqiao DUAN ; Nini DAI ; Yuzhu CHEN ; Gaonan LI ; Xiao'ang LI ; Xiaolin JI ; Xuemei ZHONG ; Zailing LI ; Liping DUAN
Journal of Zhejiang University. Science. B 2025;26(10):995-1014
OBJECTIVES:
The risk factors and role of mother‒child gut microbiota in pediatric inflammatory bowel disease (PIBD) remain unclear. We aimed to explore the clinical risk factors associated with PIBD, analyze the characteristics of gut microbiota of children and their mothers, and examine the correlation of the microbial composition in mother‒child pairs.
METHODS:
We conducted a case-control study including children with PIBD and their mothers as the case group, as well as healthy children and their mothers as the control group. Questionnaires were used to collect information such as family illness history and maternal and early-life events. Fecal samples were collected from the children and mothers for microbiota 16S ribosomal RNA (rRNA) sequencing to analyze the composition and its potential association with PIBD.
RESULTS:
A total of 54 pairs of cases and 122 pairs of controls were recruited. A family history of autoimmune disease and antibiotic use during pregnancy were associated with an increased risk of PIBD, and a higher education level of the father was associated with a decreased risk of PIBD. Children with PIBD and mothers exhibited different gut microbiota compared to healthy children and mothers. Similarities were observed in the gut microbiota of mothers and children in the same groups. Some bacterial biomarkers of mothers discovered in this study had the power to predict PIBD in their offspring.
CONCLUSIONS
PIBD is influenced by maternal risk factors and has unique gut microbiota characteristics. The mother‒child gut microbiota is closely related, suggesting the transmission and influence of the gut microbiota between mothers and children. This study highlights the potential pathogenesis of PIBD and provides a basis for developing targeted interventions.
Humans
;
Gastrointestinal Microbiome
;
Female
;
Risk Factors
;
Case-Control Studies
;
Male
;
Child
;
Inflammatory Bowel Diseases/etiology*
;
Adult
;
RNA, Ribosomal, 16S/genetics*
;
Feces/microbiology*
;
Mothers
;
Pregnancy
;
Child, Preschool
2.The Intestinal Microbiota and Human Disease.
The Korean Journal of Gastroenterology 2013;62(2):85-91
Advances in sequencing technology and the development of metagenomics have opened up new ways to investigate the microorganisms inhabiting the human gut. The intestinal microbiota confer protection against pathogens, contribute to the maturation of the immune system, and regulate host metabolism. The composition of gut microbiota in early life is influenced by mode of birth, diet, and antibiotics. Decreased biodiversity and alterations in the composition of the intestinal microbiota have been observed in many diseases including obesity, neonatal necrotizing enterocolitis, inflammatory bowel disease, and recurrent Clostridium difficile infection. Therapeutic options for the diseases linked to imbalance in the microbiota include modifying the gut microbiota through diet, probiotics, and fecal transplants.
Animals
;
Anti-Bacterial Agents/therapeutic use
;
Clostridium difficile/isolation & purification/pathogenicity
;
Enterocolitis, Pseudomembranous/drug therapy/microbiology/pathology
;
Fatty Liver/etiology/microbiology
;
Humans
;
Inflammatory Bowel Diseases/etiology/microbiology
;
Intestines/*microbiology
;
*Microbiota
;
Obesity/etiology/microbiology
3.Changes of fecal flora and its correlation with inflammatory indicators in patients with inflammatory bowel disease.
Ting ZHANG ; Ye CHEN ; Zhongqiu WANG ; Youlian ZHOU ; Shaoheng ZHANG ; Pu WANG ; Shan XIE ; Bo JIANG
Journal of Southern Medical University 2013;33(10):1474-1477
OBJECTIVETo investigate the changes in fecal flora and its correlation with the occurrence and progression of inflammatory bowel disease (IBD).
METHODSWe collected fresh fecal specimens from 167 IBD patients (including 113 with ulcerative colitis and 54 with Crohn's disease) and 54 healthy volunteers. The fecal flora was analyzed by gradient dilution method and the data of inflammatory markers including WBC, PLT, CRP and ESR were collected to assess the association between the fecal flora and the inflammatory markers.
RESULTSThe species Enterrococcus (6.60∓0.23, P<0.01), Saccharomyces (2.22∓0.27, P<0.05), Bacteriodes (5.57∓0.28, P<0.001), Bifidobacterium (5.08∓0.30, P<0.01), Peptococcus (6.22∓0.25, P<0.001), Lactobacillus (6.00∓0.26, P<0.001), and Clostridium (3.57∓0.30, P<0.05) all increased significantly, while Eubacterium (1.56∓0.24, P<0.01) reduced markedly in patients with ulcerative colitis compared with those in the control subjects. Enterrococcus (6.93∓0.28, P<0.01), Saccharomyces (2.73∓0.37, P<0.01), Bacteriodes (4.32∓0.52, P<0.05), Bifidobacterium (4.88∓0.42, P<0.05), Peptococcus (6.19∓0.32, P<0.01) and Lactobacillus (4.73∓0.47, P<0.001) all increased significantly and Eubacterium (1.01∓0.29, P<0.01) and Clostridium (0.87∓0.31, P<0.01) decreased in patients with Crohn's disease. The positivity rates of bacterial culture were consistent with the results of quantitative analysis of the fecal flora. The changes in fecal flora did not show a significant correlation with these inflammatory markers.
CONCLUSIONIBD patients have fecal flora imbalance compared with the healthy controls, and this imbalance may contribute to the occurrence and progression of IBD. The decline of Eubacterium contributes to the occurrence and development of IBD.
Adult ; Bacteria ; isolation & purification ; Bacteroides ; isolation & purification ; Bifidobacterium ; isolation & purification ; Biomarkers ; analysis ; Clostridium ; isolation & purification ; Colitis, Ulcerative ; microbiology ; Crohn Disease ; microbiology ; Enterococcus ; isolation & purification ; Eubacterium ; isolation & purification ; Feces ; microbiology ; Female ; Humans ; Inflammatory Bowel Diseases ; etiology ; microbiology ; Lactobacillus ; isolation & purification ; Male ; Peptococcus ; isolation & purification ; Saccharomyces ; isolation & purification
4.Metagenomics in studying gastrointestinal tract microorganism.
Bo XU ; Yunjuan YANG ; Junjun LI ; Xianghua TANG ; Yuelin MU ; Zunxi HUANG
Chinese Journal of Biotechnology 2013;29(12):1721-1735
Animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host. The gut microbial community of humans and animals has received significant attention from researchers because of its association with health and disease. The application of metagenomics technology enables researchers to study not only the microbial composition but also the function of microbes in the gastrointestinal tract. In this paper, combined with our own findings, we summarized advances in studying gastrointestinal tract microorganism with metagenomics and the bioinformatics technology.
Animals
;
Gastrointestinal Tract
;
microbiology
;
Humans
;
Hyperglycemia
;
etiology
;
Inflammatory Bowel Diseases
;
etiology
;
Metagenome
;
physiology
;
Metagenomics
;
methods
;
Obesity
;
etiology

Result Analysis
Print
Save
E-mail