1.Electroacupuncture reduced airway inflammation by activating somatosensory-sympathetic pathways in allergic asthmatic rats.
Hongli MA ; Xiaowen LIU ; Huamei CAI ; Yun YAN ; Weixia LI ; Jing ZHAO
Chinese Medical Journal 2025;138(6):702-712
BACKGROUND:
Electroacupuncture (EA) treatment is efficacious in patients with respiratory disorders, although the mechanisms of its action in lung-function protection are poorly understood. This study aimed to explore the neuroanatomical mechanisms of EA stimulation at the BL13 acupoint (Feishu, EA-BL13) improvement in asthma.
METHODS:
Allergic asthma was induced by intranasal 2.0% ovalbumin (OVA) instillation combined with intraperitoneal injection of the 10.0% OVA. The levels of interleukin (IL)-4 and IL-5 were detected by enzyme-linked immunosorbent assay. Hematoxylin and eosin and periodic acid-schiff stain were used to evaluate inflammatory cell infiltration and mucus secretion. Cellular oncogene fos induction in neurons after EA stimulation was detected by immunofluorescent staining. The messenger RNA expression levels of adrenergic receptors were quantified with real-time polymerase chain reaction.
RESULTS:
EA improved airway inflammation and mucus secretion mainly by activating somatosensory-sympathetic pathways ( P <0.001). Briefly, the intermediolateral (IML) nuclei of the spinal cord received signals from somatic EA stimulation and then delivered the information via the sympathetic trunk to the lung. Excited sympathetic nerve endings in lung tissue released large amounts of catecholamines that specifically activated the β2 adrenergic receptor (β2AR) on T cells ( P <0.01) and further decreased the levels of IL-4 and IL-5 ( P <0.001) through the cyclic adenosine monophosphate/protein kinase A signaling pathway.
CONCLUSION
This study provided a new explanation and clinical basis for the use of EA-BL13 as a treatment for allergic asthma in both the attack and remission stages and other respiratory disorders related to airway inflammation.
Electroacupuncture/methods*
;
Animals
;
Asthma/immunology*
;
Rats
;
Rats, Sprague-Dawley
;
Male
;
Inflammation/therapy*
;
Interleukin-4/metabolism*
;
Interleukin-5/metabolism*
2.Associations of systemic immune-inflammation index and systemic inflammation response index with maternal gestational diabetes mellitus: Evidence from a prospective birth cohort study.
Shuanghua XIE ; Enjie ZHANG ; Shen GAO ; Shaofei SU ; Jianhui LIU ; Yue ZHANG ; Yingyi LUAN ; Kaikun HUANG ; Minhui HU ; Xueran WANG ; Hao XING ; Ruixia LIU ; Wentao YUE ; Chenghong YIN
Chinese Medical Journal 2025;138(6):729-737
BACKGROUND:
The role of inflammation in the development of gestational diabetes mellitus (GDM) has recently become a focus of research. The systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI), novel indices, reflect the body's chronic immune-inflammatory state. This study aimed to investigate the associations between the SII or SIRI and GDM.
METHODS:
A prospective birth cohort study was conducted at Beijing Obstetrics and Gynecology Hospital from February 2018 to December 2020, recruiting participants in their first trimester of pregnancy. Baseline SII and SIRI values were derived from routine clinical blood results, calculated as follows: SII = neutrophil (Neut) count × platelet (PLT) count/lymphocyte (Lymph) count, SIRI = Neut count × monocyte (Mono) count/Lymph count, with participants being grouped by quartiles of their SII or SIRI values. Participants were followed up for GDM with a 75-g, 2-h oral glucose tolerance test (OGTT) at 24-28 weeks of gestation using the glucose thresholds of the International Association of Diabetes and Pregnancy Study Groups (IADPSG). Logistic regression was used to analyze the odds ratios (ORs) (95% confidence intervals [CIs]) for the the associations between SII, SIRI, and the risk of GDM.
RESULTS:
Among the 28,124 women included in the study, the average age was 31.8 ± 3.8 years, and 15.76% (4432/28,124) developed GDM. Higher SII and SIRI quartiles were correlated with increased GDM rates, with rates ranging from 12.26% (862/7031) in the lowest quartile to 20.10% (1413/7031) in the highest quartile for the SII ( Ptrend <0.001) and 11.92-19.31% for the SIRI ( Ptrend <0.001). The ORs (95% CIs) of the second, third, and fourth SII quartiles were 1.09 (0.98-1.21), 1.21 (1.09-1.34), and 1.39 (1.26-1.54), respectively. The SIRI findings paralleled the SII outcomes. For the second through fourth quartiles, the ORs (95% CIs) were 1.24 (1.12-1.38), 1.41 (1.27-1.57), and 1.64 (1.48-1.82), respectively. These associations were maintained in subgroup and sensitivity analyses.
CONCLUSION
The SII and SIRI are potential independent risk factors contributing to the onset of GDM.
Humans
;
Female
;
Pregnancy
;
Diabetes, Gestational/immunology*
;
Prospective Studies
;
Adult
;
Inflammation/immunology*
;
Glucose Tolerance Test
;
Birth Cohort
3.Adaptive immunity in the neuroinflammation of Alzheimer's disease.
Hanchen LIU ; Yun CHEN ; Jing ZHANG ; Xiaochun CHEN
Chinese Medical Journal 2025;138(17):2116-2129
Alzheimer's disease (AD) is the most common cause of dementia and is a growing public health challenge. Neuroinflammation has been proposed as a prominent pathological feature of AD and has traditionally been attributed to the innate immune system. However, emerging evidence highlights the involvement of adaptive immunity, particularly T and B lymphocytes, in the neuroinflammatory processes of AD. It remains unclear how adaptive immune responses, originally intended to protect the body, contribute to chronic inflammation and neuronal dysfunction in AD. Here, we review the roles of adaptive immunity, cellular composition, and niches and their contribution to AD development and progression. Notably, we synthesize the crosstalk between adaptive immunity and the innate immune system of the central nervous system (CNS), which is mainly mediated by glial cells and myeloid cells, and their interrelationships with amyloid-β (Aβ)/Tau pathology. We hypothesized that the alterations observed in innate immunity in AD mirror age-related immune alterations, whereas the dysregulation of adaptive immunity contributes more accurately to disease-specific immune responses. Targeting adaptive immunity in the context of neuroinflammation may provide new insights into potential therapeutic strategies designed to modulate immune responses, thereby facilitating the diagnosis, intervention, and treatment of AD.
Alzheimer Disease/metabolism*
;
Humans
;
Adaptive Immunity/physiology*
;
Immunity, Innate/immunology*
;
Animals
;
Neuroinflammatory Diseases/immunology*
;
Inflammation/immunology*
;
Amyloid beta-Peptides/metabolism*
4.Network pharmacology, molecular docking, and animal experiments reveal mechanism of Zhizhu Decoction in regulating macrophage polarization to reduce adipose tissue inflammation in obese children.
Yong-Kai YIN ; Chang-Miao NIU ; Li-Ting LIANG ; Mo DAN ; Tian-Qi GAO ; Yan-Hong QIN ; Xiao-Ning YAN
China Journal of Chinese Materia Medica 2025;50(1):228-238
Network pharmacology and molecular docking were employed to predict the mechanism of Zhizhu Decoction in regulating macrophage polarization to reduce adipose tissue inflammation in obese children, and animal experiments were then carried out to validate the prediction results. The active ingredients and targets of Zhizhu Decoction were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The inflammation related targets in the adipose tissue of obese children were searched against GeneCards, OMIM, and DisGeNET, and a drug-disease-target network was established. STRING was used to construct a protein-protein interaction(PPI) network and screen for core targets. R language was used to carry out Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. AutoDock was used for the molecular docking between core targets and active ingredients. 24 SPF grade 6-week C57B/6J male mice were adaptively fed for 1 week, and 8 mice were randomly selected as the blank group. The remaining 16 mice were fed with high-fat diet for 8 weeks to onstruct a high-fat diet induced mouse obesity model. After successful modeling, the 16 mice were randomly divided into model group and Zhizhu Decoction group, with 8 mice in each group. Zhizhu Decoction group was intervened by gavage for 14 days, once a day. Blank group and model group were given an equal amount of sterile double distilled water(ddH_2O) by gavage daily. After the last gavage, serum and inguinal adipose tissue were collected from mice for testing. The morphology of inguinal adipose tissue was observed by hematoxylin-eosin(HE) staining, the levels of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α)were detected by enzyme-linked immunosorbent assay(ELISA), and the protein expression of macrophage marker molecule nitric oxide synthase(iNOS) and epidermal growth factor like hormone receptor 1(F4/80) was detected by immunofluorescence staining. Network pharmacology predicted luteolin, naringenin, and nobiletin as the main active ingredients in Zhizhu Decoction and 15 core targets. KEGG pathway enrichment analysis revealed involvement in the key signaling pathway of nuclear factor κB(NF-κB). Molecular docking showed that the active ingredients of Zhizhu Decoction bound well to the core targets. Animal experiment showed that compared with the model group, Zhizhu Decoction reduced the distribution of inflammatory cytokines in the inguinal adipose tissue of mice, lowered the levels of TNF-α and IL-6 in the serum(P<0.05, P<0.01), and down-regulated the expression of iNOS and F4/80(P<0.05). The results showed that the active ingredients in Zhizhu Decoction, such as luteolin, naringenin, and nobiletin, inhibit the aggregation of macrophages in adipose tissue, downregulate their classic activated macrophage(M1) polarization, reduce the expression of inflammatory factors IL-6 and TNF-α, and thus improve adipose tissue inflammation in obese mice.
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Docking Simulation
;
Adipose Tissue/immunology*
;
Mice
;
Male
;
Humans
;
Network Pharmacology
;
Macrophages/immunology*
;
Mice, Inbred C57BL
;
Child
;
Protein Interaction Maps/drug effects*
;
Obesity/genetics*
;
Inflammation/drug therapy*
5.Improvement effect and mechanism of Wuling San on TGF-β1-induced fibrosis, inflammation, and oxidative stress damage in HK-2 cells.
Jun WU ; Xue-Ning JING ; Fan-Wei MENG ; Xiao-Ni KONG ; Jiu-Wang MIAO ; Cai-Xia ZHANG ; Hai-Lun LI ; Yun HAN
China Journal of Chinese Materia Medica 2025;50(5):1247-1254
This study investigated the effect of Wuling San on transforming growth factor-β1(TGF-β1)-induced fibrosis, inflammation, and oxidative stress in human renal tubular epithelial cells(HK-2) and its mechanism of antioxidant stress injury. HK-2 cells were cultured in vitro and divided into a control group, a TGF-β1 model group, and three treatment groups receiving Wuling San-containing serum at low(2.5%), medium(5.0%), and high(10.0%) doses. TGF-β1 was used to establish the model in all groups except the control group. CCK-8 was used to analyze the effect of different concentrations of Wuling San on the activity of HK-2 cells with or without TGF-β1 stimulation. The expression of key fibrosis molecules, including actin alpha 2(Acta2), collagen type Ⅰ alpha 1 chain(Col1α1), collagen type Ⅲ alpha 1 chain(Col3α1), TIMP metallopeptidase inhibitor 1(Timp1), and fibronectin 1(Fn1), was detected using qPCR. The expression levels of inflammatory cytokines, including tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), and interleukin-4(IL-4), were measured using ELISA kits. Glutathione peroxidase(GSH-Px), malondialdehyde(MDA), catalase(CAT), and superoxide dismutase(SOD) biochemical kits were used to analyze the effect of Wuling San on TGF-β1-induced oxidative stress injury in HK-2 cells, and the expression of nuclear factor E2-related factor 2(Nrf2), heme oxygenase 1(HO-1), and NAD(P)H quinone oxidoreductase 1(NQO1) was analyzed by qPCR and immunofluorescence. The CCK-8 results indicated that the optimal administration concentrations of Wuling San were 2.5%, 5.0%, and 10.0%. Compared with the control group, the TGF-β1 model group showed significantly increased levels of key fibrosis molecules(Acta2, Col1α1, Col3α1, Timp1, and Fn1) and inflammatory cytokines(TNF-α, IL-1β, IL-6, IL-8, and IL-4). In contrast, the Wuling San administration groups were able to dose-dependently inhibit the expression levels of key fibrosis molecules and inflammatory cytokines compared with the TGF-β1 model group. Wuling San significantly increased the activities of GSH-Px, CAT, and SOD enzymes in TGF-β1-stimulated HK-2 cells and significantly inhibited the level of MDA. Furthermore, compared with the control group, the TGF-β1 model group exhibited a significant reduction in the expression of Nrf2, HO-1, and NQO1 genes and proteins. After Wuling San intervention, the expression of Nrf2, HO-1, and NQO1 genes and proteins was significantly increased. Correlation analysis showed that antioxidant stress enzymes(GSH-Px, CAT, and SOD) and Nrf2 signaling were significantly negatively correlated with key fibrosis molecules and inflammatory cytokines in the TGF-β1-stimulated HK-2 cell model. In conclusion, Wuling San can inhibit TGF-β1-induced fibrosis in HK-2 cells by activating the Nrf2 signaling pathway, improving oxidative stress injury, and reducing inflammation.
Humans
;
Oxidative Stress/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Fibrosis/genetics*
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Epithelial Cells/immunology*
;
Inflammation/metabolism*
6.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
7.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
8.Research advances in the mechanism of Toll-like receptor 4 mediated intestinal injury and inflammatory response in necrotizing enterocolitis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):57-63
Necrotizing enterocolitis (NEC) is an intestinal inflammatory and necrotic disease seen in premature infants, and remains the leading cause of death resulted from gastrointestinal diseases in premature infants. The specific pathogenesis of NEC is still unclear. In recent years, a lot of studies have reported that Toll-like receptor 4 (TLR4) plays a key role in the pathogenesis of NEC. TLR4, which is abundantly expressed in intestinal epithelial cells of premature infants, binds to bacterial lipopolysaccharide (LPS) to activate downstream signaling pathways, leading to disruption of intestinal epithelial integrity and bacterial translocation, resulting in intestinal ischemic necrosis and inflammatory responses, which may rapidly progress to severe sepsis, multiple organ dysfunction, and death. This paper reviews the mechanism of TLR4-related signaling pathways in intestinal epithelial injury and inflammatory responses in newborns with NEC, providing a reference to study new therapeutic targets for NEC.
Enterocolitis, Necrotizing/pathology*
;
Toll-Like Receptor 4/metabolism*
;
Humans
;
Infant, Newborn
;
Signal Transduction
;
Inflammation/metabolism*
;
Animals
;
Intestines/immunology*
;
Intestinal Mucosa/pathology*
;
Infant, Premature
9.Study on the gene expression and regulation mechanisms of fibroblasts in acute inflammatory response.
Meng DU ; Hanjing LIAO ; Manjing HUANG ; Yaqin WANG ; Zongjie ZHAO ; Zhixiang ZHU ; Jun LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):391-397
Objective To investigate the gene expression and regulatory mechanisms of mouse embryonic fibroblasts (MEFs) under inflammatory conditions, aiming to elucidate the role of MEFs in inflammatory responses and provide a foundation for discovering anti-inflammatory drugs that act by modulating MEF function. Methods MEFs cultured in vitro were divided into the following groups: lipopolysaccharides (LPS)-treated group, inflammatory conditioned medium (CM)-treated group, and control group, which were treated with LPS, CM, and equal volume solvent, respectively. Transcriptome sequencing was used to analyze the effects of two stimuli on gene expression profile of MEFs. Real time fluorescence quantitative PCR (RT-qPCR) was employed to verify the transcription levels of highly expressed genes of MEFs induced by CM. ELISA was performed to determine the concentrations of cytokines in cell supernatants. Finally, the regulatory effects of CM on the activation of signaling pathways in MEFs were analyzed by immunoblotting. Results Transcriptome analysis showed that both LPS and CM induced the transcription of a large number of genes in MEFs. Compared with LPS, CM potentiated the mRNA transcription of some acute phase proteins, inflammatory cytokines, chemokines, matrix metalloproteinases (MMP), prostaglandin synthetases, and colony-stimulating factors. The transcriptome analysis was verified by RT-qPCR. The results of ELISA showed that CM treatment significantly increased the secretion of interleukin 6 (IL-6), C-C motif chemokine ligand (CCL2), and C-X-C motif chemokine ligand (CXCL1) by MEFs compared with LPS. Mechanism study showed that both LPS and CM induced the phosphorylation of nuclear factor-κB p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), extracellular regulated protein kinases 1/2 (ERK1/2), and TANK-binding kinase (TBK) in MEFs, and CM strongly stimulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in MEFs. Conclusion Both LPS and CM can induce transcription and protein secretion of various inflammation-related genes in MEFs. CM can partly enhance LPS-induced activation of MEFs, and the mechanism may be related to the enhancement effect of CM on the activation STAT3 signaling pathway.
Animals
;
Fibroblasts/immunology*
;
Mice
;
Lipopolysaccharides/pharmacology*
;
Inflammation/metabolism*
;
Signal Transduction/drug effects*
;
Gene Expression Regulation/drug effects*
;
Cytokines/genetics*
;
Culture Media, Conditioned/pharmacology*
;
Cells, Cultured
10.The role of cytokines in Chlamydia-induced inflammation.
Tianai CAO ; Yan ZHOU ; Tianjun JIA
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):564-570
Chlamydia is an obligate intracellular pathogen that causes a wide range of diseases in humans and animals. Chlamydia infection often causes inflammatory response of the body, which seriously affects the health of the host. Cytokines, as key molecules of immune regulation, play an important role in Chlamydia-induced inflammation. Proinflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), IL-6 and interferon γ (IFN-γ), are rapidly activated in the early stage of Chlamydia-induced infection, participating in the recruitment of immune cells to the site of infection and initiating inflammatory response; IL-10 and transforming growth factor β (TGF-β) regulate the activation and function of immune cells in the late stage of inflammation, thus affecting the development of inflammation. There are complex interactions and regulatory mechanisms among cytokines. This review summarizes the role of cytokines in Chlamydia-induced inflammation, and provides an important theoretical basis for the diagnosis and treatment of Chlamydia infection related diseases and the development of vaccines.
Humans
;
Cytokines/metabolism*
;
Chlamydia Infections/microbiology*
;
Animals
;
Inflammation/microbiology*
;
Chlamydia/immunology*

Result Analysis
Print
Save
E-mail