1.Reduction in RNF125-mediated RIG-I ubiquitination and degradation promotes renal inflammation and fibrosis progression.
Lu-Xin LI ; Ting-Ting JI ; Li LU ; Xiao-Ying LI ; Li-Min LU ; Shou-Jun BAI
Acta Physiologica Sinica 2025;77(3):385-394
Persistent inflammation plays a pivotal role in the initiation and progression of renal fibrosis. Activation of the pattern recognition receptor retinoic acid-inducible gene-I (RIG-I) is implicated in the initiation of inflammation. This study aimed to investigate the upstream mechanisms that regulates the activation of RIG-I and its downstream signaling pathway. Eight-week-old male C57BL/6 mice were used to establish unilateral ureteral obstruction (UUO)-induced renal fibrosis model, and the renal tissue samples were collected 14 days later for analysis. Transforming growth factor-β (TGF-β)-treated mouse renal tubular epithelial cells were used in in vitro studies. The results demonstrated that, compared to the control group, UUO kidney exhibited significant fibrosis, which was accompanied by the increases of RIG-I, p-NF-κB p65 and inflammatory cytokines, such as TNF-α and IL-1β. Additionally, the protein level of the E3 ubiquitin ligase RNF125 was significantly downregulated and predominantly localized in the renal tubular epithelial cells. Similarly, the treatment of tubular cells with TGF-β induced the increases in RIG-I, p-NF-κB p65 and inflammatory cytokines while decreasing RNF125. Co-immunoprecipitation (Co-IP) assays confirmed that RNF125 was able to interact with RIG-I. Overexpression of RNF125 promoted the ubiquitination of RIG-I, and accelerated its degradation via the ubiquitin-proteasome pathway. Overexpression of RNF125 in UUO kidneys and in vitro tubular cells effectively mitigated the inflammatory response and renal fibrosis. In summary, our results demonstrated that the decrease in RNF125 under pathological conditions led to reduction in RIG-I ubiquitination and degradation, activation of the downstream NF-κB signaling pathway and increase in inflammatory cytokine production, which promoted the progression of renal fibrosis.
Animals
;
Fibrosis
;
Male
;
Ubiquitination
;
Mice
;
Mice, Inbred C57BL
;
DEAD Box Protein 58
;
Ubiquitin-Protein Ligases/physiology*
;
Inflammation/metabolism*
;
Ureteral Obstruction/complications*
;
Kidney/pathology*
;
Signal Transduction
;
Transforming Growth Factor beta/pharmacology*
2.Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways.
Min LI ; Zhu-Jun YIN ; Li LI ; Yun-Yun QUAN ; Ting WANG ; Xin ZHU ; Rui-Rong TAN ; Jin ZENG ; Hua HUA ; Qin-Xuan WU ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2025;31(7):590-599
OBJECTIVE:
To investigate the anti-inflammatory effect of rutaecarpine (RUT) on monosodium urate crystal (MSU)-induced murine peritonitis in mice and further explored the underlying mechanism of RUT in lipopolysaccharide (LPS)/MSU-induced gout model in vitro.
METHODS:
In MSU-induced mice, 36 male C57BL/6 mice were randomly divided into 6 groups of 8 mice each group, including the control group, model group, RUT low-, medium-, and high-doses groups, and prednisone acetate group. The mice in each group were orally administered the corresponding drugs or vehicle once a day for 7 consecutive days. The gout inflammation model was established by intraperitoneal injection of MSU to evaluate the anti-gout inflammatory effects of RUT. Then the proinflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the proportions of infiltrating neutrophils cytokines were detected by flow cytometry. In LPS/MSU-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and proinflammatory cytokines were measured by ELISA. The percentage of pyroptotic cells were detected by flow cytometry. Respectively, the mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot, the nuclear translocation of nuclear factor κB (NF-κB) p65 was observed by laser confocal imaging. Additionally, surface plasmon resonance (SPR) and molecular docking were applied to validate the binding ability of RUT components to tumor necrosis factor α (TNF-α) targets.
RESULTS:
RUT reduced the levels of infiltrating neutrophils and monocytes and decreased the levels of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6, all P<0.01). In vitro, RUT reduced the production of IL-1β, IL-6 and TNF-α. In addition, RT-PCR revealed the inhibitory effects of RUT on the mRNA levels of IL-1β, IL-6, cyclooxygenase-2 and TNF-α (P<0.05 or P<0.01). Mechanistically, RUT markedly reduced protein expressions of tumor necrosis factor receptor (TNFR), phospho-mitogen-activated protein kinase (p-MAPK), phospho-extracellular signal-regulated kinase, phospho-c-Jun N-terminal kinase, phospho-NF-κB, phospho-kinase α/β, NOD-like receptor thermal protein domain associated protein 3 (NLRPS), cleaved-cysteinyl aspartate specific proteinase-1 and cleaved-gasdermin D in macrophages (P<0.05 or P<0.01). Molecularly, SPR revealed that RUT bound to TNF-α with a calculated equilibrium dissociation constant of 31.7 µmol/L. Molecular docking further confirmed that RUT could interact directly with the TNF-α protein via hydrogen bonding, van der Waals interactions, and carbon-hydrogen bonding.
CONCLUSION
RUT alleviated MSU-induced peritonitis and inhibited the TNFR1-MAPK/NF-κB and NLRP3 inflammasome signaling pathway to attenuate gouty inflammation induced by LPS/MSU in THP-1 macrophages, suggesting that RUT could be a potential therapeutic candidate for gout.
Animals
;
NF-kappa B/metabolism*
;
Male
;
Indole Alkaloids/therapeutic use*
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Inflammation/complications*
;
Uric Acid
;
Quinazolines/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Gout/chemically induced*
;
Inflammasomes/metabolism*
;
Cytokines/metabolism*
;
THP-1 Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Lipopolysaccharides
;
Quinazolinones
3.Resveratrol Attenuates Inflammation in Acute Lung Injury through ROS-Triggered TXNIP/NLRP3 Pathway.
Wen-Han HUANG ; Kai-Ying FAN ; Yi-Ting SHENG ; Wan-Ru CAI
Chinese journal of integrative medicine 2025;31(12):1078-1086
OBJECTIVE:
To evaluate the protective effects of resveratrol against acute lung injury (ALI) and investigate the potential mechanisms underlying the reactive oxygen species (ROS)-triggered thioredoxin-interacting protein (TXNIP)/NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway.
METHODS:
C57BL/6 mice and J774A.1 cells were selected as the research subjects. Thirty Mice were randomly divided into 5 groups of 6 in each group: control with 0.9% saline, 5 mg/kg lipopolysaccharide (LPS) 24 h, 25 mg/kg resveratrol + 5 mg/kg LPS, 100 mg/kg resveratrol + 5 mg/kg LPS, and 4 mg/kg NLRP3 inhibitor CY-09 + 5 mg/kg LPS. For cell stimulation, cells were pretreated with 5 and 20 µmol/L resveratrol for 2 h, and stimulated with or without 1 µg/mL LPS and 3 mmol/L ATP for 2 h. The antioxidant N-acetyl-L-cysteine (NAC, 2 µmol/L) was used as the positive control group. Hematoxylin and eosin staining was used to evaluate the degree of lung LPS-induced tissue damage, and enzyme-linked immunosorbent assay was used to evaluate the contents of interleukin-1 β (IL-1 β) and IL-18 in the serum and cell supernatant. ROS and malondialdehyde (MDA) levels in the lung tissue were detected using the corresponding kits. Western blotting was used to detect the expressions of TXNIP, high-mobility group box 1 (HMGB1), NLRP3, as well as cysteine-aspartic acid protease 1 (caspase-1) and gasdermin D (GSDMD) along with their cleaved forms in lung tissue. Additionally, reverse transcription quantitative polymerase chain reaction was performed to analyze the expression of related inflammatory cytokines. ROS content was detected using flow cytometry and confocal laser microscopy. Mitochondrial morphological changes were observed using transmission electron microscopy, and HMGB1 expression was detected using immunofluorescence.
RESULTS:
Resveratrol significantly alleviated LPS-induced lung damage with reduced inflammation, interstitial edema, and leukocyte infiltration (P<0.01). It also decreased serum levels of IL-1 β and IL-18 (P<0.05), while downregulating the expressions of NLRP3, IL-6, and other inflammatory markers at both the protein and mRNA levels (P<0.05). Notably, the higher dose (100 mg/kg) demonstrated a better effect than the lower dose (25 mg/kg). In macrophages, resveratrol reduced IL-1 β and IL-18 following LPS and ATP stimulation, suppressed HMGB1 translocation, and inhibited formation and activation of the NLRP3 inflammasome (P<0.05 or P<0.01). These anti-inflammatory effects were mediated through the suppression ROS accumulation (P<0.01) and mitochondrial dysfunction. Transmission electron microscopy revealed that resveratrol preserved mitochondrial structure, preventing the mitochondrial damage seen in LPS-treated groups (P<0.01). The expressions of cleaved caspase-1, cleaved GSDMD, and cytoplasmic HMGB1 were all reduced following resveratrol treatment (P<0.01). Moreover, resveratrol inhibited dissociation of TXNIP from thioredoxin, blocking subsequent activation of NLRP3 and downstream inflammatory cytokines (P<0.01). Similarly, the higher concentration of resveratrol (20 µ mol/L) exhibited superior efficacy in vitro.
CONCLUSION
Resveratrol can reduce the inflammatory response following ALI and inhibit the activation of NLRP3 inflammasome and the level of HMGB1 in the cytoplasm by inhibiting ROS overproduction.
Acute Lung Injury/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Animals
;
Resveratrol/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Inflammation/complications*
;
Mice, Inbred C57BL
;
Carrier Proteins/metabolism*
;
Signal Transduction/drug effects*
;
Lipopolysaccharides
;
Thioredoxins/metabolism*
;
Mice
;
Lung/drug effects*
;
Male
;
Cell Line
;
Interleukin-1beta/metabolism*
;
Cell Cycle Proteins
;
Stilbenes/therapeutic use*
4.Observation of morphological and molecular biological changes of nasal mucosa in patients with type 2 inflammation chronic rhinosinusitis with nasal polyps after Reboot surgery.
Xubo CHEN ; Xinhua ZHU ; Yu ZHU ; Zheng ZHOU ; Zhihui FU ; Hongbing LIU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(9):809-816
Objective:To explore the effect, postoperative mucosal pathological changes and molecular biological changes of reboot operation for type 2 inflammation chronic rhinosinusitis with nasal polyps(CRSwNP) patients, and to provide theoretical basis for the clinical application of this kind of operation. Methods:We collected 29 patients who were diagnosed with CRSwNP with type 2 inflammatino response and underwent Reboot surgery from June 2022 to August 2023, and 27 patients who were diagnosed with deviated septum and underwent simple submucosal resection of the septum as the control group. We conducted nasal symptom scoring, endoscopic sinusitis scoring, and CT scanning of the sinuses before and after surgery, as well as HE staining, immunohistochemical staining, and detection of inflammatory factors using Elisa kits at the time of surgery, 1, 3, and 6 months postoperatively. We also observed the ultrastructural changes using transmission electron microscopy and scanning electron microscopy, and performed proteomic analysis of the mucosa in the ethmoid sinus area of the sinusitis patients at the time of surgery and 6 months postoperatively. Results:After 6 months of postoperative follow-up, CT scores of the nasal cavity and sinuses had gradually decreased compared with the preoperative period. The VAS score of main symptoms, SNOT-22 score and Lund-Kennedy endoscopic score were decreased after 12 months follow-up. The histological morphology of the mucosa in the area of the screen was significantly improved compared with the preoperative period, with a reduction in the number of eosinophils. The levels of inflammatory factors such as IL-4 and IL-5 et al. in the mucosa of the area of the screen were gradually reduced compared with the preoperative period. The histological morphology, ultrastructure, and cilia structure of the mucosa in the area of the screen were gradually improved compared with the preoperative period, though not recovered completely. The number of CD4⁺T and CD8⁺T cells not changed significantly before and after the surgery yet. By conducting proteomic analysis of the ethmoidal sinus mucosa before and after surgery, differential proteins were selected, and bioinformatics analysis was conducted on the differentially expressed proteins. By using cytoHubba to identify hub genes and intersecting them with the genes related to chronic sinusitis, we found that MMP9 expression increased in non-type 2 CRS and type 2 CRS in sequence, while ACTC1 expression decreased in non-tpye 2 CRS and type 2 CRS in sequence. Conclusion:Reboot surgery can improve the postoperative symptoms and signs of patients, improve the pathological morphology of the mucosa, and influence the expression of protein after surgery. However, the surgery may not have a significant impact on the distribution of T cell subpopulations and inflammation signal pathway in the nasal mucosa.
Humans
;
Sinusitis/metabolism*
;
Nasal Polyps/metabolism*
;
Nasal Mucosa/ultrastructure*
;
Chronic Disease
;
Rhinitis/complications*
;
Inflammation
;
Male
;
Female
;
Postoperative Period
;
Adult
;
Interleukin-5/metabolism*
;
Interleukin-4/metabolism*
;
Middle Aged
;
Proteomics
;
Rhinosinusitis
5.Fangji Fuling Decoction Alleviates Sepsis by Blocking MAPK14/FOXO3A Signaling Pathway.
Yi WANG ; Ming-Qi CHEN ; Lin-Feng DAI ; Hai-Dong ZHANG ; Xing WANG
Chinese journal of integrative medicine 2024;30(3):230-242
OBJECTIVE:
To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.
METHODS:
A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.
RESULTS:
FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).
CONCLUSION
FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.
Mice
;
Animals
;
Mitogen-Activated Protein Kinase 14/metabolism*
;
Wolfiporia
;
Lipopolysaccharides/pharmacology*
;
Sepsis/complications*
;
Signal Transduction
;
Inflammation/drug therapy*
;
Oxygen Radioisotopes
6.Analysis of the clinical characteristics and misdiagnosis of area postrema syndrome manifesting as intractable nausea, vomiting, and hiccups in neuromyelitis optica spectrum disorders.
Shi Min ZHANG ; Feng QIU ; Xuan SUN ; Hui SUN ; Lei WU ; De Hui HUANG ; Wei Ping WU
Chinese Journal of Internal Medicine 2023;62(6):705-710
Objective: To investigate the misdiagnosis of area postrema syndrome (APS) manifesting as intractable nausea, vomiting and hiccups in neuromyelitis optic spectrum disease (NMOSD) and reduce the risk of misdiagnosis. Methods: We retrospectively analyzed data from NMOSD patients attending the Department of Neurology at the First Medical Center of PLA General Hospital between January 2019 and July 2021. SPSS25.0 was then used to analyze the manifestations, misdiagnosis, and mistreatment of APS. Results: A total of 207 patients with NMOSD were included, including 21 males and 186 females. The mean age of onset was 39±15 years (range: 5-72 years). The proportion of patients who were positive for serum aquaporin 4 antibody was 82.6% (171/207). In total, 35.7% (74/207) of the NMOSD patients experienced APS during the disease course; of these patients, 70.3% (52/74) had APS as the first symptom and 29.7% (22/74) had APS as a secondary symptom. The misdiagnosis rates for these conditions were 90.4% (47/52) and 50.0% (11/22), respectively. As the first symptom, 19.2% (10/52) of patients during APS presented only with intractable nausea, vomiting and hiccups; 80.8% (42/52) of patients experienced other neurological symptoms. The Departments of Gastroenterology and General Medicine were the departments that most frequently made the first diagnosis of APS, accounting for 54.1% and 17.6% of patients, respectively. The most common misdiagnoses related to diseases of the digestive system and the median duration of misdiagnosis was 37 days. Conclusions: APS is a common symptom of NMOSD and is associated with a high rate of misdiagnosis. Other concomitant symptoms often occur with APS. Gaining an increased awareness of this disease/syndrome, obtaining a detailed patient history, and performing physical examinations are essential if we are to reduce and avoid misdiagnosis.
Male
;
Female
;
Humans
;
Child, Preschool
;
Child
;
Adolescent
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Neuromyelitis Optica/diagnosis*
;
Area Postrema
;
Retrospective Studies
;
Hiccup/complications*
;
Vomiting/etiology*
;
Nausea/etiology*
;
Inflammation
;
Syndrome
;
Autoantibodies
;
Diagnostic Errors
;
Aquaporin 4
7.Hepatic pathological characteristics and factors influencing alanine transaminase value below twice the upper limit of normal in patients with chronic hepatitis B.
Xiao Hao WANG ; Xiao Qing LIU ; Da Chuan CAI ; Peng HU ; Hu LI
Chinese Journal of Hepatology 2023;31(5):483-488
Objective: To analyze the hepatic pathological characteristics and factors influencing an alanine transaminase value below twice the upper limit of normal in patients with chronic hepatitis B (CHB) and further explore the optimal ALT threshold strategy for initiating antiviral therapy. Methods: Clinical data of treatment-naïve CHB patients who underwent liver biopsies from January 2010 to December 2019 were retrospectively collected. Multiple regression models were used to explore the ALT levels and significant risk of hepatic histological changes (≥G2/S2). Receiver operating characteristic curve was used to evaluate the value of different models in diagnosing liver tissue inflammation≥G2 or fibrosis ≥ S2. Results: A total of 447 eligible CHB patients, with a median age of 38.0 years and 72.9% males, were included. During ALT normalization, there was significant liver inflammation (≥G2) and fibrosis (≥S2) in 66.9% and 53.0% of patients, respectively. With an ALT rise of 1-2×ULN, the proportions of liver inflammation≥G2 and fibrosis≥S2 were 81.2% and 60.0%, respectively. After adjusting for confounding factors, higher ALT levels (> 29 U/L) were found to be associated with significant liver inflammation (OR: 2.30, 95% CI: 1.11 ~ 4.77) and fibrosis (OR: 1.84, 95% CI: 1.10 ~ 3.09). After the measurement of glutamyltransferase-platelet ratio (GPR), the proportion of CHB patients with≥G2/S2 was significantly reduced under different treatment thresholds of ALT standards, and in particular, the erroneous evaluation of liver fibrosis≥S2 was significantly improved (33.5% to 57.5%). Conclusion: More than half of CHB patients have a normal ALT or one within 2 × ULN, regardless of whether or not there is apparent inflammation and fibrosis. GPR can significantly improve the precise assessment of different conditions of treatment thresholds for the ALT value in CHB patients.
Male
;
Humans
;
Adult
;
Female
;
Hepatitis B, Chronic/complications*
;
Alanine Transaminase
;
Retrospective Studies
;
Liver/pathology*
;
Liver Cirrhosis/complications*
;
Inflammation/pathology*
;
Hepatitis B e Antigens
8.Clinical and imaging analysis of neurological complications in critically ill children infected with SARS-CoV-2 Omicron.
Xiaoyu WANG ; Xinxin QI ; Yilin ZHAO ; Feng WEI ; Weiguo YANG ; Hongwu ZENG
Chinese Critical Care Medicine 2023;35(11):1157-1163
OBJECTIVE:
To summarize clinical predictors and imaging characteristics of critically ill children infected with SARS-CoV-2 Omicron with neurological complications in Shenzhen during the peak of the first round of infections.
METHODS:
The clinical data of 11 critically ill children with neurological complications infected with SARS-CoV-2 Omicron in Shenzhen Children's Hospital from December 12 to 31, 2022, were retrospectively collected and analyzed. Laboratory test results related to liver parenchymal injury, histiocytic injury, inflammation, and coagulation function were collected, and imaging characteristics including CT and/or magnetic resonance imaging (MRI) were analyzed. The differences in CT/MRI score, acute necrotizing encephalopathy severity scale (ANE-SS) score and total score (CT/MRI score + ANE-SS score) were compared between the two groups with different prognosis during hospitation.
RESULTS:
Among 11 children, 7 were male and 4 were female. The age ranged from 10 months to 16 years. There were 5 cases of acute necrotizing encephalopathy (ANE) and 6 cases of acute fulminant cerebral edema (AFCE). During hospitalization, 3 patients survived and 8 patients died of multiple organ dysfunction syndrome (MODS), including 2 cases of ANE and 6 cases of AFCE. All cases had fever (> 38.5 centigrade), and 3 cases had ultra-high fever (> 41 centigrade). Within 48 hours of onset, all cases had disorders of consciousness and 9 cases had seizures. The 8 dead children had complications with multisystem involvement, including shock, respiratory failure, disseminated intravascular coagulation (DIC), liver failure, renal failure or myocardial damage, and the laboratory predictors related to hepatocellular injury [alanine aminotransferase (ALT), aspartate aminotransferase (AST)], histocyte injury [creatine kinase (CK), lactate dehydrogenase (LDH)], inflammation [procalcitonin (PCT), interleukin-6 (IL-6), serum ferritin (SF)], coagulation function (D-dimer) and blood glucose (Glu) increased in different quantities, of which PCT was specifically increased in 6 cases with AFCE, PLT was specifically decreased in 3 cases with AFCE, and ALT and LDH were significantly increased in 2 cases with ANE. Imaging analysis showed subarachnoid hemorrhage, basal ganglia and thalamus lesions in all 6 cases with AFCE, while thalamus lesions in all 5 cases with ANE. The ANE-SS score of 8 deceased children ranged from 2 to 7 (of which 6 cases were ≥ 5), and the ANE-SS score of 3 surviving children ranged from 0 to 2. Eight dead children had a CT/MRI score of 1-4 (of which 6 cases were 4), and 3 surviving children had a CT/MRI score of 1-2 (of which 2 cases were 1). The total score of 8 deceased children was 6-10 (of which 6 cases ≥ 8), and 3 surviving children was 1-4.
CONCLUSIONS
The neurological complications of critically ill children infected with SARS-CoV-2 Omicron in Shenzhen progressed rapidly to ANE and AFCE, with high mortality. High fever (> 40 centigrade), convulsion/disturbance of consciousness, and multiple organ failure were the most common symptoms in ANE and AFCE cases. PCT increased and PLT decreased specifically in AFCE cases. Poor prognosis (death) was more common in age < 4 years old, predictors of ALT, AST, CK, LDH, PCT, D-dimer, Glu, IL-6 increased significantly, PLT decreased significantly. The common imaging feature of ANE and AFCE is the involvement of dorsal thalamus, a new imaging sign of AFCE (subarachnoid hemorrhage) was found. The higher the ANE-SS score, CT/MRI score and total score, the greater the risk of death.
Humans
;
Male
;
Child
;
Female
;
Infant
;
Child, Preschool
;
SARS-CoV-2
;
Interleukin-6
;
Retrospective Studies
;
Critical Illness
;
COVID-19/complications*
;
Procalcitonin
;
Inflammation
;
Brain Diseases/diagnostic imaging*
9.The role of inflammation in heart failure with preserved ejection fraction.
Qi ZHANG ; Yun-Er CHEN ; Xin-Xin ZHU ; Xia WANG ; Ai-Juan QU
Acta Physiologica Sinica 2023;75(3):390-402
Heart failure with preserved ejection fraction (HFpEF) is a type of heart failure characterized by left ventricular diastolic dysfunction with preserved ejection fraction. With the aging of the population and the increasing prevalence of metabolic diseases, such as hypertension, obesity and diabetes, the prevalence of HFpEF is increasing. Compared with heart failure with reduced ejection fraction (HFrEF), conventional anti-heart failure drugs failed to reduce the mortality in HFpEF due to the complex pathophysiological mechanism and multiple comorbidities of HFpEF. It is known that the main changes of cardiac structure of in HFpEF are cardiac hypertrophy, myocardial fibrosis and left ventricular hypertrophy, and HFpEF is commonly associated with obesity, diabetes, hypertension, renal dysfunction and other diseases, but how these comorbidities cause structural and functional damage to the heart is not completely clear. Recent studies have shown that immune inflammatory response plays a vital role in the progression of HFpEF. This review focuses on the latest research progress in the role of inflammation in the process of HFpEF and the potential application of anti-inflammatory therapy in HFpEF, hoping to provide new research ideas and theoretical basis for the clinical prevention and treatment in HFpEF.
Humans
;
Heart Failure
;
Stroke Volume/physiology*
;
Hypertrophy, Left Ventricular/metabolism*
;
Ventricular Dysfunction, Left/metabolism*
;
Inflammation/complications*
;
Obesity
;
Hypertension
10.Obesity is positively Associated with Depression in Older Adults: Role of Systemic Inflammation.
Ye Xin GUO ; An Qi WANG ; Xin GAO ; Jun NA ; Wei ZHE ; Yi ZENG ; Jing Rui ZHANG ; Yuan Jing JIANG ; Fei YAN ; Mukaram YUNUS ; Hui WANG ; Zhao Xue YIN
Biomedical and Environmental Sciences 2023;36(6):481-489
OBJECTIVE:
We aimed to explore the association between obesity and depression and the role of systemic inflammation in older adults.
METHODS:
Adults ≥ 65 years old ( n = 1,973) were interviewed at baseline in 2018 and 1,459 were followed up in 2021. General and abdominal obesity were assessed, and serum C-reactive protein (CRP) levels were measured at baseline. Depression status was assessed at baseline and at follow-up. Logistic regression was used to analyze the relationship between obesity and the incidence of depression and worsening of depressive symptoms, as well as the relationship between obesity and CRP levels. The associations of CRP levels with the geriatric depression scale, as well as with its three dimensions, were investigated using multiple linear regressions.
RESULTS:
General obesity was associated with worsening depression symptoms and incident depression, with an odds ratio ( OR) [95% confidence interval ( CI)] of 1.53 (1.13-2.12) and 1.80 (1.23-2.63), especially among old male subjects, with OR (95% CI) of 2.12 (1.25-3.58) and 2.24 (1.22-4.11), respectively; however, no significant relationship was observed between abdominal obesity and depression. In addition, general obesity was associated with high levels of CRP, with OR (95% CI) of 2.58 (1.75-3.81), especially in subjects free of depression at baseline, with OR (95% CI) of 3.15 (1.97-5.04), and CRP levels were positively correlated with a score of specific dimension (life satisfaction) of depression, P < 0.05.
CONCLUSION
General obesity, rather than abdominal obesity, was associated with worsening depressive symptoms and incident depression, which can be partly explained by the systemic inflammatory response, and the impact of obesity on depression should be taken more seriously in the older male population.
Humans
;
Male
;
Aged
;
Depression/etiology*
;
C-Reactive Protein/metabolism*
;
Obesity, Abdominal/epidemiology*
;
Longitudinal Studies
;
Inflammation/epidemiology*
;
Obesity/complications*

Result Analysis
Print
Save
E-mail