1.Research advances in inflammation and oxidative stress in varicocele-induced male infertility: a narrative review.
Li-Hong WANG ; Lei ZHENG ; Hui JIANG ; Tao JIANG
Asian Journal of Andrology 2025;27(2):177-184
Varicocele, the most common and treatable cause of male infertility, significantly impacts fertility. The pathophysiological mechanisms of varicocele have not been fully understood yet. Recent studies have focused on the pathophysiology of varicocele-induced infertility, highlighting inflammation and oxidative stress as key contributing factors. We reviewed recent research on the roles of inflammation and oxidative stress in the pathophysiology of varicocele and found that they negatively impact semen parameters, spermatogenesis, and testicular and epididymal function. In addition, this article summarizes the related factors of inflammation and oxidative stress caused by varicocele. Finally, a brief consideration on the treatments to address inflammation and oxidative stress is proposed. This review may provide treatment options and targets for varicocele-induced infertility. However, the relationship between inflammation and oxidative stress in varicocele still needs further study.
Varicocele/physiopathology*
;
Humans
;
Oxidative Stress/physiology*
;
Infertility, Male/metabolism*
;
Male
;
Inflammation/physiopathology*
;
Spermatogenesis/physiology*
2.Mechanisms of pyroptosis in metabolic diseases.
Journal of Central South University(Medical Sciences) 2025;50(8):1465-1474
In recent years, pyroptosis, an inflammatory form of programmed cell death, has gained increasing attention in the field of metabolic disease research. Pyroptosis is closely associated with inflammatory responses. A growing body of evidence suggests that pyroptosis not only plays a critical role in regulating inflammation but can also influence metabolic status, cellular function, and tissue damage through multiple pathways, thereby either exacerbating or alleviating the progression of metabolic diseases. However, the precise molecular mechanisms of pyroptosis and its roles across different metabolic diseases remain unclear, and investigations into related therapeutic targets are still in early stages. Systematically elucidating the mechanisms by which pyroptosis contributes to metabolic diseases and exploring its potential roles in inflammation and pathophysiology may provide new insights and strategies for the prevention and treatment of metabolic disorders, and further promote advances in this research field.
Pyroptosis/physiology*
;
Humans
;
Metabolic Diseases/metabolism*
;
Inflammation/physiopathology*
;
Animals
;
Inflammasomes
3.Acupuncture activates vagus nerve-macrophage axis and improves cardiac electrophysiology and inflammatory response in rats with atrial fibrillation via α7nAChR-JAK2/STAT3 pathway.
Zhi-Han LI ; Wen-Min YANG ; Qi HUANG ; Guang-Xia SHI ; Cun-Zhi LIU ; Yu-Qin ZHANG
Journal of Integrative Medicine 2025;23(4):398-414
OBJECTIVE:
The occurrence and development of atrial fibrillation (AF) are influenced by the autonomic nervous system and inflammation. Acupuncture is an effective treatment for AF. This study explored the protective effects of acupuncture in a rat model of paroxysmal AF and investigated its mechanisms.
METHODS:
Male Sprague-Dawley rats (n = 130) were randomly divided into blank control (Con), sham operation (Sham), AF, and acupuncture treatment (Acu) groups. A paroxysmal AF model was established by rapid atrial pacing through the jugular vein. Rats in the Acu group were immobilized to receive acupuncture treatment at Neiguan acupoint (PC6) for 20 min daily for seven days. The other groups were immobilized for the same duration over the treatment period but did not receive acupuncture. The AF induction rate, AF duration, cardiac electrophysiological parameters, and heart rate variability were evaluated by monitoring surface electrocardiogram and vagus nerve discharge signals. After the intervention, the rats were euthanized, and atrial morphology was assessed using haematoxylin and eosin staining. The expression of macrophage F4/80 antigen (F4/80) and cluster of differentiation (CD) 86 in atrial myocardial tissue was detected using immunohistochemistry, immunofluorescence and flow cytometry. The expression levels or contents of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), α7 nicotinic acetylcholine receptor (α7nAChR), phosphorylated Janus kinase 2 (p-JAK2), and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in atrial myocardial tissue were detected using Western blotting, reverse transcription-quantitative polymerase chain reaction, or enzyme-linked immunosorbent assay. The role of α7nAChR in acupuncture treatment was verified by intraperitoneal injection of the α7nAChR antagonist methyllycaconitine (MLA).
RESULTS:
Compared with the AF group, acupuncture significantly reduced AF duration and induction rate, improved cardiac electrophysiology by enhancing vagus nerve activity and regulating autonomic balance. It also decreased the pro-inflammatory M1 macrophage proportion, alleviating myocardial injury and infiltration. MLA weakened acupuncture's electrophysiological improvement and anti-inflammatory effect. Results suggest that acupuncture triggers the α7nAChR-JAK2/STAT3 pathway and exerts cardioprotection via neuroimmune regulation.
CONCLUSION
Acupuncture significantly reduced the AF induction rate, shortened AF duration, improved cardiac electrophysiological parameters, enhanced vagus nerve activity, and decreased the expression of pro-inflammatory M1 macrophages and inflammatory factors in rats with paroxysmal AF. Its positive effects are related to the activation of the α7nAChR-mediated JAK2/STAT3 signalling pathway, indicating that the interaction between cardiac vagus nerve and macrophages may be a potential target for acupuncture in the prevention and treatment of AF. Please cite this article as: Li ZH, Yang WM, Huang Q, Shi GX, Liu CZ, Zhang YQ. Acupuncture activates vagus nerve-macrophage axis and improves cardiac electrophysiology and inflammatory response in rats with atrial fibrillation via α7nAChR-JAK2/STAT3 pathway. J Integr Med. 2025; 23(4): 398-414.
Animals
;
Male
;
Rats, Sprague-Dawley
;
STAT3 Transcription Factor/metabolism*
;
alpha7 Nicotinic Acetylcholine Receptor/metabolism*
;
Janus Kinase 2/metabolism*
;
Atrial Fibrillation/metabolism*
;
Vagus Nerve/physiopathology*
;
Rats
;
Acupuncture Therapy
;
Signal Transduction
;
Macrophages/metabolism*
;
Inflammation/therapy*
4.Research advances on the influence of poor dietary habits on the development of keloids.
Chinese Journal of Burns 2022;38(4):389-393
Long-term poor dietary habits can cause changes in the intestinal flora, resulting in the production of a large number of lipopolysaccharide, increase intestinal mucosal permeability, and activate the entrance of a large number of inflammatory factors into the portal vein. In addition, a high carbohydrate diet can increase liver metabolic burden, increase mitochondrial oxidative phosphorylation, leading to oxidative stress, generate new fat during adenosine triphosphate synthesis, and thus resulting in ectopic fat accumulation, which further activate nuclear factor-κB signaling pathway and release inflam- matory factors such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and so on. This leads to obesity and insulin resis- tance, ultimately triggering systemic low-grade inflammation. This article reviews the mechanism of poor dietary habits leading to systemic low-grade inflammation, the clinical and experimental research progress of keloids and systemic low-grade inflammation, the association between dietary habits and keloid constitution, and puts forward the hypothesis that poor dietary habits may lead to the occurrence and development of keloids.
Diet/adverse effects*
;
Feeding Behavior
;
Humans
;
Inflammation/metabolism*
;
Keloid/physiopathology*
;
NF-kappa B/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
5.Lower albumin levels are associated with frailty measures, trace elements, and an inflammation marker in a cross-sectional study in Tanushimaru.
Maki YAMAMOTO ; Hisashi ADACHI ; Mika ENOMOTO ; Ako FUKAMI ; Sachiko NAKAMURA ; Yume NOHARA ; Akiko SAKAUE ; Nagisa MORIKAWA ; Hitoshi HAMAMURA ; Kenta TOYOMASU ; Yoshihiro FUKUMOTO
Environmental Health and Preventive Medicine 2021;26(1):25-25
BACKGROUND:
There is little data on the association between the lower nutrition represented by serum albumin levels and related factors in a general population. The present study aimed to determine whether the albumin level positioned as some kind of biomarker with frailty measures, trace elements, and an inflammation marker.
METHODS:
In 2018, we performed an epidemiological survey in 1368 subjects who resided in Tanushimaru, Japan, in which we examined the blood chemistry including albumin, trace elements, hormone levels, and carotid ultrasonography. Albumin levels were categorized into 4 groups (G1 [3.2-3.9 mg/dL], G2 [4.0-4.3 mg/dL], G3 [4.4-4.6 mg/dL], and G4 [4.7-5.3 mg/dL]). The participants underwent measurements of handgrip strength and were tested by asking to walk 5 m. Their cognitive functions were evaluated by the mini-mental state examination (MMSE).
RESULTS:
Multiple stepwise regression analysis demonstrated that albumin levels were significantly and independently associated with age (inversely), systolic blood pressures, estimated glomerular filtration rate (eGFR), MMSE score, frailty measures (handgrip strength), an inflammation marker (high-sensitivity C-reactive protein), hormones (growth hormone (inversely) and insulin-like growth factor-1), and trace elements (calcium, magnesium, iron, and zinc), with a linear trend.
CONCLUSIONS
Lower albumin levels, even in the normal range, were found to be related factors of frailty measures, trace elements, and an inflammation marker in a general population.
Aged
;
Albumins/metabolism*
;
Biomarkers/blood*
;
Cross-Sectional Studies
;
Female
;
Frailty/physiopathology*
;
Hand Strength/physiology*
;
Humans
;
Inflammation/blood*
;
Japan
;
Male
;
Trace Elements/blood*
6.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
7.Effect of dihydroartemisinin supplementation on inflammation and lipid metabolism induced by lipopolysaccharide in liver of weaned piglets.
Yong-Wei ZHAO ; Yu NIU ; Jin-Tian HE ; Shu-Li JI ; Li-Li ZHANG ; Chao WANG ; Tian WANG
China Journal of Chinese Materia Medica 2020;45(1):202-208
To study the effect of dihydroartemisinin(DHA) on hepatic inflammation and lipid metabolism in weaned piglets, a liver injury model of weaned piglets was established by lipopolysaccharide(LPS)-induced method. In this study, 30 healthy weaned piglets were selected and randomly divided into control group(CON), model group(LPS) and treatment group(LD, LPS+DHA), with 10 in each group. The CON group and the LPS group were fed with a basal diet, and the LD group was fed with a basal diet+80 mg·kg~(-1) DHA. The test period was 21 days. The LPS group and the LD group were intraperitoneally injected with 100 μg·kg~(-1) LPS at 4 hours before slaughter, and the CON group was injected with the same dose of sterile physiological saline. The results showed that compared with the CON group, contents of TC, AST activity and AST/ALT ratio were significantly increased in the serum of LPS piglets(P<0.05), content of HDL-c was significantly decreased(P<0.05). In addition, in the liver, the levels of TG, NEFA, IL-1β, IL-6 and TNF-α were increased significantly(P<0.05), and activities of LPL, HL and TL were decreased significantly(P<0.05). Compared with LPS group, content of TC, activities of AST and ALT and the AST/ALT ratio were decreased significantly(P<0.05), and HDL-c content increased significantly in the serum of LD piglets(P<0.05). The contents of TG, NEFA, IL-1β, IL-6 and TNF-α and activity of FAS in the liver were decreased significantly(P<0.05), and the activities of LPL, HL and TL were increased significantly(P<0.05). Compared with the CON group, the mRNA expressions of IL-1β, IL-6, TNF-α, ACCβ and SREBP-1 c in the LPS group were significantly increased(P<0.05), the mRNA expressions of AMPKα, SIRT1, CPT-1 and SCD were decreased significantly(P<0.05). The above indicators were improved in the LD group compared with the LPS group. These results indicated that DHA had a certain effect in recovering LPS-induced liver inflammation and abnormal lipid metabolism.
Animals
;
Artemisinins/therapeutic use*
;
Dietary Supplements
;
Inflammation/drug therapy*
;
Lipid Metabolism
;
Lipopolysaccharides
;
Liver/physiopathology*
;
Swine
8.Chronic inflammation deteriorates structure and function of collagen fibril in rat temporomandibular joint disc.
Sheng-Jie CUI ; Yu FU ; Yan LIU ; Xiao-Xing KOU ; Jie-Ni ZHANG ; Ye-Hua GAN ; Yan-Heng ZHOU ; Xue-Dong WANG
International Journal of Oral Science 2019;11(1):2-2
Collagen is the building component of temporomandibular joint (TMJ) discs and is often affected by inflammation in temporomandibular disorders. The macromechanical properties of collagen are deteriorated by chronic inflammation. However, the mechanism by which inflammation influences disc function remains unknown. The relationship between the ultrastructure and nanomechanical properties of collagen in inflamed discs should be clarified. Seven-week-old female Sprague-Dawley rats were randomly divided into two groups. Chronic TMJ inflammation was induced by intra-articular injection of complete Freund's adjuvant, and samples were harvested after 5 weeks. Picrosirius staining revealed multiple colours under polarized light, which represented alternative collagen bundles in inflamed discs. Using atomic force microscopy scanning, the magnitude of Young's modulus was reduced significantly accompanied with disordered collagen fibril arrangement with porous architecture of inflamed discs. Transmission electron microscopy scanning revealed a non-uniform distribution of collagen fibres, and oversized collagen fibrils were observed in inflamed discs. Fourier transform infrared microspectroscopy revealed a decrease in 1 338 cm/amide II area ratio of collagen in different regions. The peak positions of amide I and amide II bands were altered in inflamed discs, indicating collagen unfolding. Our results suggest that sustained inflammation deteriorates collagen structures, resulting in the deterioration of the ultrastructure and nanomechanical properties of rat TMJ discs.
Animals
;
Collagen
;
ultrastructure
;
Female
;
Fibrillar Collagens
;
ultrastructure
;
Freund's Adjuvant
;
adverse effects
;
Inflammation
;
chemically induced
;
metabolism
;
pathology
;
Injections, Intra-Articular
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Temporomandibular Joint
;
Temporomandibular Joint Disc
;
physiopathology
;
ultrastructure
;
Temporomandibular Joint Disorders
;
physiopathology
9.Gait Assessment of Pain and Analgesics: Comparison of the DigiGait™ and CatWalk™ Gait Imaging Systems.
Yu XU ; Na-Xi TIAN ; Qing-Yang BAI ; Qi CHEN ; Xiao-Hong SUN ; Yun WANG
Neuroscience Bulletin 2019;35(3):401-418
Investigation of pain requires measurements of nociceptive sensitivity and other pain-related behaviors. Recent studies have indicated the superiority of gait analysis over traditional evaluations (e.g., skin sensitivity and sciatic function index [SFI]) in detecting subtle improvements and deteriorations in animal models. Here, pain-related gait parameters, whose criteria include (1) alteration in pain models, (2) correlation with nociceptive threshold, and (3) normalization by analgesics, were identified in representative models of neuropathic pain (spared nerve injury: coordination data) and inflammatory pain (intraplantar complete Freund's adjuvant: both coordination and intensity data) in the DigiGait™ and CatWalk™ systems. DigiGait™ had advantages in fixed speed (controlled by treadmill) and dynamic SFI, while CatWalk™ excelled in intrinsic velocity, intensity data, and high-quality 3D images. Insights into the applicability of each system may provide guidance for selecting the appropriate gait imaging system for different animal models and optimization for future pain research.
Analgesics
;
administration & dosage
;
Animals
;
Freund's Adjuvant
;
administration & dosage
;
Gait
;
drug effects
;
Gait Analysis
;
methods
;
Image Processing, Computer-Assisted
;
Inflammation
;
chemically induced
;
Male
;
Neuralgia
;
physiopathology
;
prevention & control
;
Pain
;
etiology
;
physiopathology
;
prevention & control
;
Rats, Sprague-Dawley
10.Houttuynia cordata polysaccharide alleviated intestinal injury and modulated intestinal microbiota in H1N1 virus infected mice.
Mei-Yu CHEN ; Hong LI ; Xiao-Xiao LU ; Li-Jun LING ; Hong-Bo WENG ; Wei SUN ; Dao-Feng CHEN ; Yun-Yi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):187-197
Houttuynia cordata polysaccharide (HCP) is extracted from Houttuynia cordata, a key traditional Chinese medicine. The study was to investigate the effects of HCP on intestinal barrier and microbiota in H1N1 virus infected mice. Mice were infected with H1N1 virus and orally administrated HCP at a dosage of 40 mg(kg(d. H1N1 infection caused pulmonary and intestinal injury and gut microbiota imbalance. HCP significantly suppressed the expression of hypoxia inducible factor-1α and decreased mucosubstances in goblet cells, but restored the level of zonula occludens-1 in intestine. HCP also reversed the composition change of intestinal microbiota caused by H1N1 infection, with significantly reduced relative abundances of Vibrio and Bacillus, the pathogenic bacterial genera. Furthermore, HCP rebalanced the gut microbiota and restored the intestinal homeostasis to some degree. The inhibition of inflammation was associated with the reduced level of Toll-like receptors and interleukin-1β in intestine, as well as the increased production of interleukin-10. Oral administration of HCP alleviated lung injury and intestinal dysfunction caused by H1N1 infection. HCP may gain systemic treatment by local acting on intestine and microbiota. This study proved the high-value application of HCP.
Animals
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Gastrointestinal Microbiome
;
drug effects
;
Houttuynia
;
chemistry
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Inflammation
;
drug therapy
;
pathology
;
Influenza A Virus, H1N1 Subtype
;
pathogenicity
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
microbiology
;
pathology
;
Lung
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
pathology
;
physiopathology
;
Plant Extracts
;
chemistry
;
Polysaccharides
;
chemistry
;
pharmacology
;
therapeutic use
;
Toll-Like Receptors
;
metabolism
;
Zonula Occludens-1 Protein
;
metabolism

Result Analysis
Print
Save
E-mail