1.Amplicon-Based MinION Sequencing Complements Severe Fever With Thrombocytopenia Syndrome (SFTS) Diagnosis via Real-Time RT-PCR in Patients With Suspected SFTS
Sara P. PRAYITNO ; Yeong Geon CHO ; Eun Sil KIM ; Kyungmin PARK ; Seonghyeon LEE ; Augustine NATASHA ; Jieun PARK ; Jin-Won SONG ; Yang Soo KIM ; Seung Soon LEE ; Won-Keun KIM
Journal of Korean Medical Science 2025;40(19):e69-
Background:
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a lethal threat.Increasing Severe fever with thrombocytopenia syndrome (SFTS) risk in Asia and the United States stems from the spread of natural host, Haemaphysalis longicornis. Rapid and accurate SFTSV molecular diagnosis is crucial for treatment decisions, reducing fatality risk.
Methods:
Blood samples from 17 suspected SFTS patients at Chuncheon Sacred Heart Hospital (September-December 2022) were collected. SFTSV was diagnosed using two reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays from Gangwon Institute of Health and Environment (RT-qPCR/GIHE) and Asan Medical Center (RT-qPCR/AMC). To address RT-qPCR disparities, amplicon-based MinION sequencing traced SFTSV genomic sequences in clinical samples.
Results:
In two samples (N39 and N50), SFTSV was detected in both RT-qPCR/GIHE and RTqPCR/AMC. Among 11 samples, RT-qPCR/AMC exclusively detected SFTSV. In four samples, both assays yielded negative results. Amplicon-based MinION sequencing enabled nearly whole-genome sequencing of SFTSV in samples N39 and N50. Among 11 discordant samples, five contained significant SFTSV reads, aligning with the RT-qPCR/AMC findings. However, another six samples showed insufficient viral reads in accordance with the negativity observed in RT-qPCR/GIHE. The phylogenetic pattern of SFTSV demonstrated N39 formed a genetic lineage with genotype A in all segments. SFTSV N50 grouped with the B-1 sub-genotype for L segment and B-2 sub-genotype for the M and S segments, indicating genetic reassortment.
Conclusion
The study demonstrates the robust sensitivity of amplicon-based MinION sequencing for the direct detection of SFTSV in clinical samples containing ultralow copies of viral genomes. Next-generation sequencing holds potential in resolving SFTSV diagnosis discrepancies, enhancing understanding of diagnostic capacity, and risk assessment for emerging SFTSV.
2.Professional biobanking education in Korea based on ISO 20387
Jong Ok KIM ; Chungyeul KIM ; Sangyong SONG ; Eunah SHIN ; Ji-Sun SONG ; Mee Sook ROH ; Dong-chul KIM ; Han-Kyeom KIM ; Joon Mee KIM ; Yeong Jin CHOI
Journal of Pathology and Translational Medicine 2025;59(1):11-25
To ensure high-quality bioresources and standardize biobanks, there is an urgent need to develop and disseminate educational training programs in accordance with ISO 20387, which was developed in 2018. The standardization of biobank education programs is also required to train biobank experts. The subdivision of categories and levels of education is necessary for jobs such as operations manager (bank president), quality manager, practitioner, and administrator. Essential training includes programs tailored for beginner, intermediate, and advanced practitioners, along with customized training for operations managers. We reviewed and studied ways to develop an appropriate range of education and training opportunities for standard biobanking education and the training of experts based on KS J ISO 20387. We propose more systematic and professional biobanking training programs in accordance with ISO 20387, in addition to the certification programs of the National Biobank and the Korean Laboratory Accreditation System. We suggest various training programs appropriate to a student’s affiliation or work, such as university biobanking specialized education, short-term job training at unit biobanks, biobank research institute symposiums by the Korean Society of Pathologists, and education programs for biobankers and researchers. Through these various education programs, we expect that Korean biobanks will satisfy global standards, meet the needs of users and researchers, and contribute to the advancement of science.
3.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
4.Amplicon-Based MinION Sequencing Complements Severe Fever With Thrombocytopenia Syndrome (SFTS) Diagnosis via Real-Time RT-PCR in Patients With Suspected SFTS
Sara P. PRAYITNO ; Yeong Geon CHO ; Eun Sil KIM ; Kyungmin PARK ; Seonghyeon LEE ; Augustine NATASHA ; Jieun PARK ; Jin-Won SONG ; Yang Soo KIM ; Seung Soon LEE ; Won-Keun KIM
Journal of Korean Medical Science 2025;40(19):e69-
Background:
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a lethal threat.Increasing Severe fever with thrombocytopenia syndrome (SFTS) risk in Asia and the United States stems from the spread of natural host, Haemaphysalis longicornis. Rapid and accurate SFTSV molecular diagnosis is crucial for treatment decisions, reducing fatality risk.
Methods:
Blood samples from 17 suspected SFTS patients at Chuncheon Sacred Heart Hospital (September-December 2022) were collected. SFTSV was diagnosed using two reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays from Gangwon Institute of Health and Environment (RT-qPCR/GIHE) and Asan Medical Center (RT-qPCR/AMC). To address RT-qPCR disparities, amplicon-based MinION sequencing traced SFTSV genomic sequences in clinical samples.
Results:
In two samples (N39 and N50), SFTSV was detected in both RT-qPCR/GIHE and RTqPCR/AMC. Among 11 samples, RT-qPCR/AMC exclusively detected SFTSV. In four samples, both assays yielded negative results. Amplicon-based MinION sequencing enabled nearly whole-genome sequencing of SFTSV in samples N39 and N50. Among 11 discordant samples, five contained significant SFTSV reads, aligning with the RT-qPCR/AMC findings. However, another six samples showed insufficient viral reads in accordance with the negativity observed in RT-qPCR/GIHE. The phylogenetic pattern of SFTSV demonstrated N39 formed a genetic lineage with genotype A in all segments. SFTSV N50 grouped with the B-1 sub-genotype for L segment and B-2 sub-genotype for the M and S segments, indicating genetic reassortment.
Conclusion
The study demonstrates the robust sensitivity of amplicon-based MinION sequencing for the direct detection of SFTSV in clinical samples containing ultralow copies of viral genomes. Next-generation sequencing holds potential in resolving SFTSV diagnosis discrepancies, enhancing understanding of diagnostic capacity, and risk assessment for emerging SFTSV.
5.Professional biobanking education in Korea based on ISO 20387
Jong Ok KIM ; Chungyeul KIM ; Sangyong SONG ; Eunah SHIN ; Ji-Sun SONG ; Mee Sook ROH ; Dong-chul KIM ; Han-Kyeom KIM ; Joon Mee KIM ; Yeong Jin CHOI
Journal of Pathology and Translational Medicine 2025;59(1):11-25
To ensure high-quality bioresources and standardize biobanks, there is an urgent need to develop and disseminate educational training programs in accordance with ISO 20387, which was developed in 2018. The standardization of biobank education programs is also required to train biobank experts. The subdivision of categories and levels of education is necessary for jobs such as operations manager (bank president), quality manager, practitioner, and administrator. Essential training includes programs tailored for beginner, intermediate, and advanced practitioners, along with customized training for operations managers. We reviewed and studied ways to develop an appropriate range of education and training opportunities for standard biobanking education and the training of experts based on KS J ISO 20387. We propose more systematic and professional biobanking training programs in accordance with ISO 20387, in addition to the certification programs of the National Biobank and the Korean Laboratory Accreditation System. We suggest various training programs appropriate to a student’s affiliation or work, such as university biobanking specialized education, short-term job training at unit biobanks, biobank research institute symposiums by the Korean Society of Pathologists, and education programs for biobankers and researchers. Through these various education programs, we expect that Korean biobanks will satisfy global standards, meet the needs of users and researchers, and contribute to the advancement of science.
6.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
7.Professional biobanking education in Korea based on ISO 20387
Jong Ok KIM ; Chungyeul KIM ; Sangyong SONG ; Eunah SHIN ; Ji-Sun SONG ; Mee Sook ROH ; Dong-chul KIM ; Han-Kyeom KIM ; Joon Mee KIM ; Yeong Jin CHOI
Journal of Pathology and Translational Medicine 2025;59(1):11-25
To ensure high-quality bioresources and standardize biobanks, there is an urgent need to develop and disseminate educational training programs in accordance with ISO 20387, which was developed in 2018. The standardization of biobank education programs is also required to train biobank experts. The subdivision of categories and levels of education is necessary for jobs such as operations manager (bank president), quality manager, practitioner, and administrator. Essential training includes programs tailored for beginner, intermediate, and advanced practitioners, along with customized training for operations managers. We reviewed and studied ways to develop an appropriate range of education and training opportunities for standard biobanking education and the training of experts based on KS J ISO 20387. We propose more systematic and professional biobanking training programs in accordance with ISO 20387, in addition to the certification programs of the National Biobank and the Korean Laboratory Accreditation System. We suggest various training programs appropriate to a student’s affiliation or work, such as university biobanking specialized education, short-term job training at unit biobanks, biobank research institute symposiums by the Korean Society of Pathologists, and education programs for biobankers and researchers. Through these various education programs, we expect that Korean biobanks will satisfy global standards, meet the needs of users and researchers, and contribute to the advancement of science.
8.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
9.Amplicon-Based MinION Sequencing Complements Severe Fever With Thrombocytopenia Syndrome (SFTS) Diagnosis via Real-Time RT-PCR in Patients With Suspected SFTS
Sara P. PRAYITNO ; Yeong Geon CHO ; Eun Sil KIM ; Kyungmin PARK ; Seonghyeon LEE ; Augustine NATASHA ; Jieun PARK ; Jin-Won SONG ; Yang Soo KIM ; Seung Soon LEE ; Won-Keun KIM
Journal of Korean Medical Science 2025;40(19):e69-
Background:
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a lethal threat.Increasing Severe fever with thrombocytopenia syndrome (SFTS) risk in Asia and the United States stems from the spread of natural host, Haemaphysalis longicornis. Rapid and accurate SFTSV molecular diagnosis is crucial for treatment decisions, reducing fatality risk.
Methods:
Blood samples from 17 suspected SFTS patients at Chuncheon Sacred Heart Hospital (September-December 2022) were collected. SFTSV was diagnosed using two reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays from Gangwon Institute of Health and Environment (RT-qPCR/GIHE) and Asan Medical Center (RT-qPCR/AMC). To address RT-qPCR disparities, amplicon-based MinION sequencing traced SFTSV genomic sequences in clinical samples.
Results:
In two samples (N39 and N50), SFTSV was detected in both RT-qPCR/GIHE and RTqPCR/AMC. Among 11 samples, RT-qPCR/AMC exclusively detected SFTSV. In four samples, both assays yielded negative results. Amplicon-based MinION sequencing enabled nearly whole-genome sequencing of SFTSV in samples N39 and N50. Among 11 discordant samples, five contained significant SFTSV reads, aligning with the RT-qPCR/AMC findings. However, another six samples showed insufficient viral reads in accordance with the negativity observed in RT-qPCR/GIHE. The phylogenetic pattern of SFTSV demonstrated N39 formed a genetic lineage with genotype A in all segments. SFTSV N50 grouped with the B-1 sub-genotype for L segment and B-2 sub-genotype for the M and S segments, indicating genetic reassortment.
Conclusion
The study demonstrates the robust sensitivity of amplicon-based MinION sequencing for the direct detection of SFTSV in clinical samples containing ultralow copies of viral genomes. Next-generation sequencing holds potential in resolving SFTSV diagnosis discrepancies, enhancing understanding of diagnostic capacity, and risk assessment for emerging SFTSV.
10.Amplicon-Based MinION Sequencing Complements Severe Fever With Thrombocytopenia Syndrome (SFTS) Diagnosis via Real-Time RT-PCR in Patients With Suspected SFTS
Sara P. PRAYITNO ; Yeong Geon CHO ; Eun Sil KIM ; Kyungmin PARK ; Seonghyeon LEE ; Augustine NATASHA ; Jieun PARK ; Jin-Won SONG ; Yang Soo KIM ; Seung Soon LEE ; Won-Keun KIM
Journal of Korean Medical Science 2025;40(19):e69-
Background:
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a lethal threat.Increasing Severe fever with thrombocytopenia syndrome (SFTS) risk in Asia and the United States stems from the spread of natural host, Haemaphysalis longicornis. Rapid and accurate SFTSV molecular diagnosis is crucial for treatment decisions, reducing fatality risk.
Methods:
Blood samples from 17 suspected SFTS patients at Chuncheon Sacred Heart Hospital (September-December 2022) were collected. SFTSV was diagnosed using two reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays from Gangwon Institute of Health and Environment (RT-qPCR/GIHE) and Asan Medical Center (RT-qPCR/AMC). To address RT-qPCR disparities, amplicon-based MinION sequencing traced SFTSV genomic sequences in clinical samples.
Results:
In two samples (N39 and N50), SFTSV was detected in both RT-qPCR/GIHE and RTqPCR/AMC. Among 11 samples, RT-qPCR/AMC exclusively detected SFTSV. In four samples, both assays yielded negative results. Amplicon-based MinION sequencing enabled nearly whole-genome sequencing of SFTSV in samples N39 and N50. Among 11 discordant samples, five contained significant SFTSV reads, aligning with the RT-qPCR/AMC findings. However, another six samples showed insufficient viral reads in accordance with the negativity observed in RT-qPCR/GIHE. The phylogenetic pattern of SFTSV demonstrated N39 formed a genetic lineage with genotype A in all segments. SFTSV N50 grouped with the B-1 sub-genotype for L segment and B-2 sub-genotype for the M and S segments, indicating genetic reassortment.
Conclusion
The study demonstrates the robust sensitivity of amplicon-based MinION sequencing for the direct detection of SFTSV in clinical samples containing ultralow copies of viral genomes. Next-generation sequencing holds potential in resolving SFTSV diagnosis discrepancies, enhancing understanding of diagnostic capacity, and risk assessment for emerging SFTSV.

Result Analysis
Print
Save
E-mail