1.Effects of dental implant surface treated with sandblasting large grit acid-etching and femtosecond laser on implant stability, marginal bone volume, and histological results in a rabbit model
Young-Tak SON ; KeunBaDa SON ; Hoseong CHO ; Jae-Mok LEE ; Sm Abu SALEAH ; JunHo HWANG ; JongHoon LEE ; HyunDeok KIM ; Myoung-Uk JIN ; Jeehyun KIM ; Mansik JEON ; Kyu-Bok LEE
The Journal of Advanced Prosthodontics 2025;17(2):101-114
PURPOSE:
The purpose of this study was to compare the surface characteristics and healing patterns after implantation of implants treated with SLA and those treated with both SLA and femtosecond laser.
MATERIALS AND METHODS:
A total of 10 male New Zealand white rabbits were used to compare recovery levels between implants treated with SLA (SLA group) and those treated with both SLA and femtosecond laser (SF group). The implants’ surface characteristics were determined through topographic evaluation, element analysis, surface roughness, and wettability evaluation. In total, 4 implants were placed in each rabbit (2 in each tibia), with 20 implants per treatment group. Using the implant stability quotient (ISQ), marginal bone volume, and histological analysis (bone-to-implant contact (BIC), bone volume/tissue volume (BV/TV)), and post implantation outcomes were assessed. Outcome data were analyzed using independent t-tests, Mann-Whitney U tests, Wilcoxon signed-rank tests, and one-way ANOVA (α = 0.05).
RESULTS:
No significant differences were noted between SLA and SF groups in terms of ISQ, marginal bone volume, BIC, and BV/TV (P > .05). However, significant differences in ISQ were observed within each group over time (P < .05). Furthermore, significant differences were noted in the marginal bone volume of the SF group (P < .05) and the BV/TV of the SLA group between weeks 4 and 6 (P < .05).
CONCLUSION
Surface treatment via SLA and femtosecond laser is feasible compared with SLA treatment alone in terms of ISQ, marginal bone volume, BIC, and BV/TV. However, further clinical research is warranted.
2.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
3.Effects of dental implant surface treated with sandblasting large grit acid-etching and femtosecond laser on implant stability, marginal bone volume, and histological results in a rabbit model
Young-Tak SON ; KeunBaDa SON ; Hoseong CHO ; Jae-Mok LEE ; Sm Abu SALEAH ; JunHo HWANG ; JongHoon LEE ; HyunDeok KIM ; Myoung-Uk JIN ; Jeehyun KIM ; Mansik JEON ; Kyu-Bok LEE
The Journal of Advanced Prosthodontics 2025;17(2):101-114
PURPOSE:
The purpose of this study was to compare the surface characteristics and healing patterns after implantation of implants treated with SLA and those treated with both SLA and femtosecond laser.
MATERIALS AND METHODS:
A total of 10 male New Zealand white rabbits were used to compare recovery levels between implants treated with SLA (SLA group) and those treated with both SLA and femtosecond laser (SF group). The implants’ surface characteristics were determined through topographic evaluation, element analysis, surface roughness, and wettability evaluation. In total, 4 implants were placed in each rabbit (2 in each tibia), with 20 implants per treatment group. Using the implant stability quotient (ISQ), marginal bone volume, and histological analysis (bone-to-implant contact (BIC), bone volume/tissue volume (BV/TV)), and post implantation outcomes were assessed. Outcome data were analyzed using independent t-tests, Mann-Whitney U tests, Wilcoxon signed-rank tests, and one-way ANOVA (α = 0.05).
RESULTS:
No significant differences were noted between SLA and SF groups in terms of ISQ, marginal bone volume, BIC, and BV/TV (P > .05). However, significant differences in ISQ were observed within each group over time (P < .05). Furthermore, significant differences were noted in the marginal bone volume of the SF group (P < .05) and the BV/TV of the SLA group between weeks 4 and 6 (P < .05).
CONCLUSION
Surface treatment via SLA and femtosecond laser is feasible compared with SLA treatment alone in terms of ISQ, marginal bone volume, BIC, and BV/TV. However, further clinical research is warranted.
4.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
5.Effects of dental implant surface treated with sandblasting large grit acid-etching and femtosecond laser on implant stability, marginal bone volume, and histological results in a rabbit model
Young-Tak SON ; KeunBaDa SON ; Hoseong CHO ; Jae-Mok LEE ; Sm Abu SALEAH ; JunHo HWANG ; JongHoon LEE ; HyunDeok KIM ; Myoung-Uk JIN ; Jeehyun KIM ; Mansik JEON ; Kyu-Bok LEE
The Journal of Advanced Prosthodontics 2025;17(2):101-114
PURPOSE:
The purpose of this study was to compare the surface characteristics and healing patterns after implantation of implants treated with SLA and those treated with both SLA and femtosecond laser.
MATERIALS AND METHODS:
A total of 10 male New Zealand white rabbits were used to compare recovery levels between implants treated with SLA (SLA group) and those treated with both SLA and femtosecond laser (SF group). The implants’ surface characteristics were determined through topographic evaluation, element analysis, surface roughness, and wettability evaluation. In total, 4 implants were placed in each rabbit (2 in each tibia), with 20 implants per treatment group. Using the implant stability quotient (ISQ), marginal bone volume, and histological analysis (bone-to-implant contact (BIC), bone volume/tissue volume (BV/TV)), and post implantation outcomes were assessed. Outcome data were analyzed using independent t-tests, Mann-Whitney U tests, Wilcoxon signed-rank tests, and one-way ANOVA (α = 0.05).
RESULTS:
No significant differences were noted between SLA and SF groups in terms of ISQ, marginal bone volume, BIC, and BV/TV (P > .05). However, significant differences in ISQ were observed within each group over time (P < .05). Furthermore, significant differences were noted in the marginal bone volume of the SF group (P < .05) and the BV/TV of the SLA group between weeks 4 and 6 (P < .05).
CONCLUSION
Surface treatment via SLA and femtosecond laser is feasible compared with SLA treatment alone in terms of ISQ, marginal bone volume, BIC, and BV/TV. However, further clinical research is warranted.
6.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
7.Effects of dental implant surface treated with sandblasting large grit acid-etching and femtosecond laser on implant stability, marginal bone volume, and histological results in a rabbit model
Young-Tak SON ; KeunBaDa SON ; Hoseong CHO ; Jae-Mok LEE ; Sm Abu SALEAH ; JunHo HWANG ; JongHoon LEE ; HyunDeok KIM ; Myoung-Uk JIN ; Jeehyun KIM ; Mansik JEON ; Kyu-Bok LEE
The Journal of Advanced Prosthodontics 2025;17(2):101-114
PURPOSE:
The purpose of this study was to compare the surface characteristics and healing patterns after implantation of implants treated with SLA and those treated with both SLA and femtosecond laser.
MATERIALS AND METHODS:
A total of 10 male New Zealand white rabbits were used to compare recovery levels between implants treated with SLA (SLA group) and those treated with both SLA and femtosecond laser (SF group). The implants’ surface characteristics were determined through topographic evaluation, element analysis, surface roughness, and wettability evaluation. In total, 4 implants were placed in each rabbit (2 in each tibia), with 20 implants per treatment group. Using the implant stability quotient (ISQ), marginal bone volume, and histological analysis (bone-to-implant contact (BIC), bone volume/tissue volume (BV/TV)), and post implantation outcomes were assessed. Outcome data were analyzed using independent t-tests, Mann-Whitney U tests, Wilcoxon signed-rank tests, and one-way ANOVA (α = 0.05).
RESULTS:
No significant differences were noted between SLA and SF groups in terms of ISQ, marginal bone volume, BIC, and BV/TV (P > .05). However, significant differences in ISQ were observed within each group over time (P < .05). Furthermore, significant differences were noted in the marginal bone volume of the SF group (P < .05) and the BV/TV of the SLA group between weeks 4 and 6 (P < .05).
CONCLUSION
Surface treatment via SLA and femtosecond laser is feasible compared with SLA treatment alone in terms of ISQ, marginal bone volume, BIC, and BV/TV. However, further clinical research is warranted.
8.Effects of dental implant surface treated with sandblasting large grit acid-etching and femtosecond laser on implant stability, marginal bone volume, and histological results in a rabbit model
Young-Tak SON ; KeunBaDa SON ; Hoseong CHO ; Jae-Mok LEE ; Sm Abu SALEAH ; JunHo HWANG ; JongHoon LEE ; HyunDeok KIM ; Myoung-Uk JIN ; Jeehyun KIM ; Mansik JEON ; Kyu-Bok LEE
The Journal of Advanced Prosthodontics 2025;17(2):101-114
PURPOSE:
The purpose of this study was to compare the surface characteristics and healing patterns after implantation of implants treated with SLA and those treated with both SLA and femtosecond laser.
MATERIALS AND METHODS:
A total of 10 male New Zealand white rabbits were used to compare recovery levels between implants treated with SLA (SLA group) and those treated with both SLA and femtosecond laser (SF group). The implants’ surface characteristics were determined through topographic evaluation, element analysis, surface roughness, and wettability evaluation. In total, 4 implants were placed in each rabbit (2 in each tibia), with 20 implants per treatment group. Using the implant stability quotient (ISQ), marginal bone volume, and histological analysis (bone-to-implant contact (BIC), bone volume/tissue volume (BV/TV)), and post implantation outcomes were assessed. Outcome data were analyzed using independent t-tests, Mann-Whitney U tests, Wilcoxon signed-rank tests, and one-way ANOVA (α = 0.05).
RESULTS:
No significant differences were noted between SLA and SF groups in terms of ISQ, marginal bone volume, BIC, and BV/TV (P > .05). However, significant differences in ISQ were observed within each group over time (P < .05). Furthermore, significant differences were noted in the marginal bone volume of the SF group (P < .05) and the BV/TV of the SLA group between weeks 4 and 6 (P < .05).
CONCLUSION
Surface treatment via SLA and femtosecond laser is feasible compared with SLA treatment alone in terms of ISQ, marginal bone volume, BIC, and BV/TV. However, further clinical research is warranted.
9.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
10.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.

Result Analysis
Print
Save
E-mail