1.Research progress on advance care planning for elderly patients with chronic diseases
Yongpeng SUN ; Song LI ; Kangli SHI ; Guiying FENG
Chinese Medical Ethics 2025;38(3):281-288
With the continuous intensification of aging, chronic diseases among the elderly have become a widely concerned public health issue. In the terminal stage, they often lose the ability to express their medical care wishes autonomously, leading to a disconnect between medical decision-making and the actual needs of the patients and increasing their physical and psychological suffering. With the rapid aging process in China, the incidence of chronic diseases in the elderly is continuously rising, which has become a serious public health problem. Studies have shown that advance care planning (ACP) has achieved remarkable results in maintaining the dignity of life for terminal chronic disease patients, improving patients’ quality of life, as well as alleviating the physical, mental, and economic burdens on their families. Therefore, the implementation of ACP is crucial for elderly patients with chronic diseases. This paper reviewed the concept of ACP, as well as application effects, challenges and limitations, and corresponding recommendations and countermeasures of ACP in elderly patients with chronic diseases, with a view to providing a solid theoretical and practical basis for the application of ACP in elderly population with chronic diseases in China.
2.Gypenoside L Regulates piR-hsa-2804461/FKBP8/Bcl-2 Axis to Promote Apoptosis and Inhibit Ovarian Cancer
Yuanguang DONG ; Yinying SUN ; Mingdian YUAN ; Ying YANG ; Jiaxin WANG ; Jingxuan ZHU ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):98-106
ObjectiveTo explore the molecular mechanism by which gypenoside L (Gyp-L) promotes apoptosis and inhibits ovarian cancer (OC) through the FK506-binding protein (FKBP) prolyl isomerase 8 (FKBP8)/B-cell lymphoma-2 (Bcl-2) axis, with the piR-hsa-2804461 pathway as a breakthrough point. MethodsThe effects of different concentrations of Gyp-L and cis-platinum on the proliferation of OVCAR3 cells were determined by the cell count kit-8 method to identify the appropriate intervention concentration for subsequent experiments. OVCAR3 cells were allocated into blank, low-dose Gyp-L (Gyp-L-L, 50 µmol·L-1), high-dose Gyp-L (Gyp-L-H, 100 µmol·L-1), and cis-platinum (15 µmol·L-1) groups. The migration, colony formation, and apoptosis of OVCAR3 cells were detected by the cell scratch assay, colony formation assay, and flow cytometry, respectively. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes in OVCAR3 cells were determined by Real-time PCR, and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by simple Western blot. Further, an OVCAR3 cell model with piR-hsa-2804461 knocked out was constructed. The cells were allocated into blank, NC-inhibitor, inhibitor, NC-inhibitor+Gyp-L, and inhibitor+Gyp-L groups. The colony formation of OVCAR3 cells was detected by the colony formation assay. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by Real-time PCR and simple Western blotting, respectively. ResultsGyp-L inhibited the migration and proliferation (P<0.01), promoted the apoptosis (P<0.05), up-regulated the mRNA level of piR-hsa-2804461 (P<0.05), and down-regulated the mRNA and protein levels of FKBP8 and Bcl-2 (P<0.05) in OVCAR3 cells. Furthermore, Gyp-L increased the mRNA and protein levels of Bcl-2-associated X protein (Bax), cysteinyl aspartate-specific proteinase (Caspase)-3, and Caspase-9, which are related to the FKBP8/Bcl-2 axis (P<0.05). ConclusionGyp-L may promote apoptosis by regulating the piR-hsa-2804461/FKBP8/Bcl-2 axis, thus affecting the occurrence of ovarian cancer.
3.Exploring Molecular Mechanism of Gypenoside L against Ovarian Cancer Based on Ferroptosis Pathway Mediated by Mature-tRNA-Asp-GTC/ATF3-LPCAT3
Jingxuan ZHU ; Jiao ZHAO ; Qun WANG ; Xiaofei SUN ; Jiaxin WANG ; Hongda ZHANG ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):107-117
ObjectiveTo investigate the role of mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in the ferroptosis phenotype of ovarian cancer (OC) cells and the regulatory mechanism of gypenoside L (Gyp-L) on mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in OC cells. MethodsThe proliferation of human ovarian adenocarcinoma OVCAR3 cells was detected by cell counting kit-8 (CCK-8) assay, and the half-maximal inhibitory concentration (IC50) values of cisplatin (DDP), Gyp-L, and DDP in the presence of Gyp-L were calculated to determine the intervention concentration for subsequent experiments. Cell cloning assay and scratch assay reflected the proliferation and migration ability of OVCAR3 cells. PANDORA-seq small RNA sequencing was used to detect the differentially expressed transfer RNA-derived small RNAs (tsRNAs) in the cells after Gyp-L intervention, and the corresponding target genes of the tsRNAs were found by the RNAhybrid software. Malondialdehyde (MDA), glutathione (GSH), and lipid peroxide (LPO) levels were measured by colorimetry or enzyme linked immunosorbent assay (ELISA) method, Fe2+ content by FerroOrange fluorescent probe, and reactive oxygen species (ROS) content by DCFH-DA fluorescent probe to reflect the occurrence of ferroptosis in OVCAR3 cells. OVCAR3 cells were divided into a control group, a 50 µmol·L-1 Gyp-L group, and a 100 µmol·L-1 Gyp-L group. Quantitative real-time polymerase chain reaction (PCR) was performed to detect the expression of mature-tRNA-Asp-GTC, mature-tRNA-Leu-CAA, mature-mt_tRNA-Tyr-GTA_5_end, mature-tRNA-Val-CAC, mature-mt_tRNA-Glu-TTC, pre-tRNA-Arg-TCT, mature-tRNA-Asn-GTT, hydroxymethylbilane synthase (HMBS), Wnt, β-catenin, glutathione peroxidase 4 (GPX4), Kelch-like ECH-associated protein 1 (KEAP1), nuclear factor erythroid 2-related factor 2 (Nrf2), activating transcription factor 3 (ATF3), cystine/glutamate antiporter xCT, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Western blot was performed to detect the expression of HMBS, Wnt, β-catenin, GPX4, KEAP1, Nrf2, ATF3, xCT, LPCAT3, and ALOX15 proteins. ResultsThe 50 µmol·L-1 Gyp-L, 100 µmol·L-1 Gyp-L, DDP, 50 µmol·L-1 Gyp-L+DDP, and 100 µmol·L-1 Gyp-L+DDP groups showed significantly inhibited proliferation and migration of OVCAR3 cells (P<0.05) and exacerbated cell ferroptosis as reflected by the increase in the content of ROS, MDA, LPO, and Fe2+, as well as a decrease in the content of GSH (P<0.05). Compared with the control group, Gyp-L effectively interfered with the expression of 25 tsRNAs in OVCAR3 cells (P<0.05, |log2Fc|>1). Pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/NRF2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/NRF2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 axial expression was significantly aberrant after Gyp-L intervention (P<0.05). ConclusionThe pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/Nrf2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling pathways are involved in OC development. Gyp-L inhibits OC development by activating OVCAR3 cell ferroptosis onset mainly through the mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling axes.
4.Molecular Mechanism of Gypenoside L in Anti-Ovarian Cancer by Affecting GCK-Mediated Glycolytic Pathway
Yuanguang DONG ; Nan SONG ; Ying YANG ; Jingxuan ZHU ; Jiaxin WANG ; Mingdian YUAN ; Yingying SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):118-124
ObjectiveTo explore the molecular mechanism of gypenoside L (Gyp-L) in the treatment of ovarian cancer (OC) by taking the glycolytic pathway of OC as the key point. MethodsThe proliferation activity of OVCAR3 cells was measured by the cell counting kit-8 (CCK-8) assay to determine the appropriate intervention concentration for subsequent experiments. The cell clone formation assay and the scratch healing assay were employed to assess the proliferation and migration capabilities of OVCAR3 cells. OVCAR3 cells were divided into a blank group, a Gyp-L-L group (low concentration of Gyp-L, 50 µmol
5.Molecular Mechanism of Treating Different Diseases with Same Treatment of Gypenoside L Affecting Oxidative Damage HUVEC and OVCAR-3 Through EGFR/STAT3/Glycolytic Pathway
Ying YANG ; Jiao ZHAO ; Xiaofei SUN ; Jiaxin WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):125-134
ObjectiveWith the epidermal growth factor receptor(EGFR)/Signal Transducers and Activators of Transcription(STAT3)/Hexokinase 2(HK2) signaling pathway in atherosclerosis (AS) and ovarian cancer (OC) as the entry point, this paper discusses the molecular mechanism of Gypenoside L (Gyp-L) treating AS and OC with different diseases, provides a new perspective and theoretical basis for TCM treating AS and OC with EGFR-STAT3-HK2 pathway, and enriches the scientific connotation of the theory of "cytoskeleton in the heart". MethodsCCK-8 was used to detect the proliferation of HUVEC and OVCAR-3 cells, in order to determine the intervention concentration for subsequent experiments. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. Western blot was used to detect the expression levels of relevant proteins. Furthermore, two cell models overexpressing EGFR were constructed and co treated with Gyp-L. HUVEC cells were divided into control, ox-LDL, OE-NC, OE-EGFR, OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. OVCAR-3 cells were divided into control, OE-NC, OE-EGFR , OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Western blot was used to detect the expression levels of EGFR-STAT3-HK2 pathway related proteins. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. ResultsGyp-L can significantly reduce the NO content of HUVEC and the pyruvate and LDH content of two cell lines (P<0.05); Inhibit the proliferation and migration ability of OVCAR-3 cells; Reduce the expression levels of EGFR/STAT3/HK2 pathway related proteins in HUVEC and OVCAR-3 cell lines (P<0.05), and inhibit the glycolysis pathway. ConclusionGyp-L can inhibit glycolysis in HUVEC and OVCAR-3 cells through the EGFR/STAT3/HK2 pathway,thereby suppressing the occurrence and development of AS and OC.
6.Gypenoside L Regulates piR-hsa-2804461/FKBP8/Bcl-2 Axis to Promote Apoptosis and Inhibit Ovarian Cancer
Yuanguang DONG ; Yinying SUN ; Mingdian YUAN ; Ying YANG ; Jiaxin WANG ; Jingxuan ZHU ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):98-106
ObjectiveTo explore the molecular mechanism by which gypenoside L (Gyp-L) promotes apoptosis and inhibits ovarian cancer (OC) through the FK506-binding protein (FKBP) prolyl isomerase 8 (FKBP8)/B-cell lymphoma-2 (Bcl-2) axis, with the piR-hsa-2804461 pathway as a breakthrough point. MethodsThe effects of different concentrations of Gyp-L and cis-platinum on the proliferation of OVCAR3 cells were determined by the cell count kit-8 method to identify the appropriate intervention concentration for subsequent experiments. OVCAR3 cells were allocated into blank, low-dose Gyp-L (Gyp-L-L, 50 µmol·L-1), high-dose Gyp-L (Gyp-L-H, 100 µmol·L-1), and cis-platinum (15 µmol·L-1) groups. The migration, colony formation, and apoptosis of OVCAR3 cells were detected by the cell scratch assay, colony formation assay, and flow cytometry, respectively. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes in OVCAR3 cells were determined by Real-time PCR, and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by simple Western blot. Further, an OVCAR3 cell model with piR-hsa-2804461 knocked out was constructed. The cells were allocated into blank, NC-inhibitor, inhibitor, NC-inhibitor+Gyp-L, and inhibitor+Gyp-L groups. The colony formation of OVCAR3 cells was detected by the colony formation assay. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by Real-time PCR and simple Western blotting, respectively. ResultsGyp-L inhibited the migration and proliferation (P<0.01), promoted the apoptosis (P<0.05), up-regulated the mRNA level of piR-hsa-2804461 (P<0.05), and down-regulated the mRNA and protein levels of FKBP8 and Bcl-2 (P<0.05) in OVCAR3 cells. Furthermore, Gyp-L increased the mRNA and protein levels of Bcl-2-associated X protein (Bax), cysteinyl aspartate-specific proteinase (Caspase)-3, and Caspase-9, which are related to the FKBP8/Bcl-2 axis (P<0.05). ConclusionGyp-L may promote apoptosis by regulating the piR-hsa-2804461/FKBP8/Bcl-2 axis, thus affecting the occurrence of ovarian cancer.
7.Exploring Molecular Mechanism of Gypenoside L against Ovarian Cancer Based on Ferroptosis Pathway Mediated by Mature-tRNA-Asp-GTC/ATF3-LPCAT3
Jingxuan ZHU ; Jiao ZHAO ; Qun WANG ; Xiaofei SUN ; Jiaxin WANG ; Hongda ZHANG ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):107-117
ObjectiveTo investigate the role of mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in the ferroptosis phenotype of ovarian cancer (OC) cells and the regulatory mechanism of gypenoside L (Gyp-L) on mature-tRNA-Asp-GTC and pre-tRNA-Arg-TCT in OC cells. MethodsThe proliferation of human ovarian adenocarcinoma OVCAR3 cells was detected by cell counting kit-8 (CCK-8) assay, and the half-maximal inhibitory concentration (IC50) values of cisplatin (DDP), Gyp-L, and DDP in the presence of Gyp-L were calculated to determine the intervention concentration for subsequent experiments. Cell cloning assay and scratch assay reflected the proliferation and migration ability of OVCAR3 cells. PANDORA-seq small RNA sequencing was used to detect the differentially expressed transfer RNA-derived small RNAs (tsRNAs) in the cells after Gyp-L intervention, and the corresponding target genes of the tsRNAs were found by the RNAhybrid software. Malondialdehyde (MDA), glutathione (GSH), and lipid peroxide (LPO) levels were measured by colorimetry or enzyme linked immunosorbent assay (ELISA) method, Fe2+ content by FerroOrange fluorescent probe, and reactive oxygen species (ROS) content by DCFH-DA fluorescent probe to reflect the occurrence of ferroptosis in OVCAR3 cells. OVCAR3 cells were divided into a control group, a 50 µmol·L-1 Gyp-L group, and a 100 µmol·L-1 Gyp-L group. Quantitative real-time polymerase chain reaction (PCR) was performed to detect the expression of mature-tRNA-Asp-GTC, mature-tRNA-Leu-CAA, mature-mt_tRNA-Tyr-GTA_5_end, mature-tRNA-Val-CAC, mature-mt_tRNA-Glu-TTC, pre-tRNA-Arg-TCT, mature-tRNA-Asn-GTT, hydroxymethylbilane synthase (HMBS), Wnt, β-catenin, glutathione peroxidase 4 (GPX4), Kelch-like ECH-associated protein 1 (KEAP1), nuclear factor erythroid 2-related factor 2 (Nrf2), activating transcription factor 3 (ATF3), cystine/glutamate antiporter xCT, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Western blot was performed to detect the expression of HMBS, Wnt, β-catenin, GPX4, KEAP1, Nrf2, ATF3, xCT, LPCAT3, and ALOX15 proteins. ResultsThe 50 µmol·L-1 Gyp-L, 100 µmol·L-1 Gyp-L, DDP, 50 µmol·L-1 Gyp-L+DDP, and 100 µmol·L-1 Gyp-L+DDP groups showed significantly inhibited proliferation and migration of OVCAR3 cells (P<0.05) and exacerbated cell ferroptosis as reflected by the increase in the content of ROS, MDA, LPO, and Fe2+, as well as a decrease in the content of GSH (P<0.05). Compared with the control group, Gyp-L effectively interfered with the expression of 25 tsRNAs in OVCAR3 cells (P<0.05, |log2Fc|>1). Pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/NRF2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/NRF2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 axial expression was significantly aberrant after Gyp-L intervention (P<0.05). ConclusionThe pre-tRNA-Arg-TCT/HMBS/Wnt/β-catenin/GPX4, pre-tRNA-Arg-TCT/KEAP1/Nrf2/xCT, mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT, and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling pathways are involved in OC development. Gyp-L inhibits OC development by activating OVCAR3 cell ferroptosis onset mainly through the mature-tRNA-Asp-GTC/ATF3/KEAP1/Nrf2/xCT and mature-tRNA-Asp-GTC/LPCAT3/ALOX15 signaling axes.
8.Molecular Mechanism of Gypenoside L in Anti-Ovarian Cancer by Affecting GCK-Mediated Glycolytic Pathway
Yuanguang DONG ; Nan SONG ; Ying YANG ; Jingxuan ZHU ; Jiaxin WANG ; Mingdian YUAN ; Yingying SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):118-124
ObjectiveTo explore the molecular mechanism of gypenoside L (Gyp-L) in the treatment of ovarian cancer (OC) by taking the glycolytic pathway of OC as the key point. MethodsThe proliferation activity of OVCAR3 cells was measured by the cell counting kit-8 (CCK-8) assay to determine the appropriate intervention concentration for subsequent experiments. The cell clone formation assay and the scratch healing assay were employed to assess the proliferation and migration capabilities of OVCAR3 cells. OVCAR3 cells were divided into a blank group, a Gyp-L-L group (low concentration of Gyp-L, 50 µmol
9.Molecular Mechanism of Treating Different Diseases with Same Treatment of Gypenoside L Affecting Oxidative Damage HUVEC and OVCAR-3 Through EGFR/STAT3/Glycolytic Pathway
Ying YANG ; Jiao ZHAO ; Xiaofei SUN ; Jiaxin WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):125-134
ObjectiveWith the epidermal growth factor receptor(EGFR)/Signal Transducers and Activators of Transcription(STAT3)/Hexokinase 2(HK2) signaling pathway in atherosclerosis (AS) and ovarian cancer (OC) as the entry point, this paper discusses the molecular mechanism of Gypenoside L (Gyp-L) treating AS and OC with different diseases, provides a new perspective and theoretical basis for TCM treating AS and OC with EGFR-STAT3-HK2 pathway, and enriches the scientific connotation of the theory of "cytoskeleton in the heart". MethodsCCK-8 was used to detect the proliferation of HUVEC and OVCAR-3 cells, in order to determine the intervention concentration for subsequent experiments. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. Western blot was used to detect the expression levels of relevant proteins. Furthermore, two cell models overexpressing EGFR were constructed and co treated with Gyp-L. HUVEC cells were divided into control, ox-LDL, OE-NC, OE-EGFR, OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. OVCAR-3 cells were divided into control, OE-NC, OE-EGFR , OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Western blot was used to detect the expression levels of EGFR-STAT3-HK2 pathway related proteins. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. ResultsGyp-L can significantly reduce the NO content of HUVEC and the pyruvate and LDH content of two cell lines (P<0.05); Inhibit the proliferation and migration ability of OVCAR-3 cells; Reduce the expression levels of EGFR/STAT3/HK2 pathway related proteins in HUVEC and OVCAR-3 cell lines (P<0.05), and inhibit the glycolysis pathway. ConclusionGyp-L can inhibit glycolysis in HUVEC and OVCAR-3 cells through the EGFR/STAT3/HK2 pathway,thereby suppressing the occurrence and development of AS and OC.
10.Correlation between periodontal status of maxillary molars and maxillary sinus mucosal thickening
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(5):368-376
Objective:
To investigate the effect of periodontal inflammation of maxillary molars on the mucosal thickening of the maxillary sinus and to provide references for the prevention and treatment of odontogenic maxillary sinusitis.
Methods:
This study was approved by the hospital’s Medical Ethics committee. A retrospective analysis was conducted on the cone beam CT (CBCT) images of the maxillary sinuses of 246 patients with periodontitis. Based on the inclusion and exclusion criteria, a total of 331 maxillary sinus images were finally included. The molars with the most severe periodontal inflammation were selected for statistical analysis, including 270 first molars and 61 second molars. CBCT images of these patients were collected. Periodontal indices of maxillary molars [minimum remaining alveolar bone height (minRABH), degree of alveolar bone absorption, furcation involvement, and vertical bone loss] were measured. The correlation between these periodontal indices and maxillary sinus mucosal thickening (defined as normal when the maximum thickness of the maxillary sinus mucosa ≤ 2 mm and thickening when>2 mm) was analyzed.
Results:
Among the 331 maxillary molars and their corresponding maxillary sinuses, 264 cases showed thickening of the maxillary sinus mucosa, with an average thickness of (5.9 ± 5.1) mm, accounting for 79.8%. The thickening of the maxillary sinus mucosa was significantly correlated with periodontal indices, including minRABH, degree of alveolar bone absorption, furcation involvement, and vertical bone loss (P<0.05), as well as with tooth position (P<0.05). Further binary logistic regression analysis revealed that the possibility of maxillary sinus mucosal thickening in the minRABH<4 mm group was 5.6 times that of the group with minRABH ≥ 10 mm. The possibility of maxillary sinus mucosal thickening in the group with minRABH of 4-10 mm was 2.2 times that of the group with minRABH ≥ 10 mm. The possibility of maxillary sinus mucosal thickening caused by periodontitis in the second maxillary molar was 2.8 times that of the first maxillary molar. minRABH and tooth position of the maxillary molar had a more significant impact on the thickening of the maxillary sinus mucosa compared to other factors (P<0.05).
Conclusion
When the minRABH of maxillary molars is less than 4 mm or when the tooth position is the second maxillary molar, the possibility of thickening of the maxillary sinus mucosa increases. This suggests that thorough periodontal treatment is an important factor in preventing odontogenic maxillary sinusitis.


Result Analysis
Print
Save
E-mail