1.Neurotrophin-3 receptor switching promotes neural functional recovery in rats after spinal cord injury
Yan CONG ; Jian YU ; Zhide SUN ; Dawei KANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2268-2276
BACKGROUND:Neurotrophins represent a novel therapeutic approach for spinal cord injury,showing promising clinical applicability.Autophagy modulation is one of the mechanisms by which neurotrophins exert their effects,yet the specific signaling pathways involved remain unclear. OBJECTIVE:To explore how neurotrophin-3(NT-3)modulates autophagy in oligodendrocytes via switching between P75NTR and TrkC receptors and promotes neurological function recovery after spinal cord injury,aiming to further clarify the specific molecular mechanisms involved. METHODS:Twenty-four Sprague-Dawley rats were randomly divided into three groups:sham operation,spinal cord injury,and NT-3 groups.The therapeutic effect of NT-3 on spinal cord injury in rats was evaluated using the Basso,Beattie,and Bresnahan locomotor rating scale.The expression levels of NT-3,Olig1,myelin basic protein,and the autophagy marker LC3B in rat spinal cord tissue were detected by western blot.In a cellular experiment,oligodendrocytes were cultured in vitro and divided into six groups:oxygen-glucose deprivation(OGD),OGD+NT-3,OGD+NT-3+P75NTR plasmid,OGD+NT-3+TrkC plasmid,OGD+3-methyladenine(an autophagy inhibitor),and OGD+rapamycin(an autophagy activator).Oligodendrocyte morphology was observed under a light microscope,cell apoptosis was assessed by TUNEL staining,and the expression of TrkC receptor,P75NTR,LC3B,and the phosphorylation status of the PI3K/AKT/mTOR and AMPK/mTOR signaling pathways were evaluated by western blot. RESULTS AND CONCLUSION:Animal experiments demonstrated that compared with the sham operation group,NT-3 expression significantly increased after spinal cord injury(P<0.05);exogenous NT-3 treatment accelerated neurological function recovery in rats post spinal cord injury(P<0.05)and increased the expression of Olig1 and myelin basic proteins(P<0.05).Cellular experiments revealed that 3 hours marked the early to middle/late phase transition.Compared with the OGD group,oligodendrocytes in the OGD+NT-3 group could maintain their morphology for a longer period of time,TrkC receptor expression was lower in the early phase and significantly upregulated in the middle/late phase(P<0.05),whereas P75NTR protein expression was upregulated in the early phase and downregulated in the middle/late phase(P<0.05),and autophagy levels showed an initial increase followed by a decrease(P<0.05).By comparing the morphology and TUNEL staining results of cells in the OGD+NT-3,OGD+rapamycin,and OGD+3-methyladenine groups,we found that either promoting or inhibiting autophagy alone had adverse effects on oligodendrocyte survival,whereas modulating autophagy in a manner similar to NT-3 could maximally maintain cell survival.NT-3 could promote autophagy in the early phase via the P75NTR/AMPK/mTOR signaling pathway and inhibit autophagy in the later phase through the TrkC/PI3K/AKT/mTOR signaling pathway.Based on these findings,it is concluded that NT-3 can bidirectionally regulate autophagy in oligodendrocytes through the switching of P75NTR/TrkC receptors,thereby maintaining cell survival and facilitating the recovery of neurological functions in rats after spinal cord injury.
2.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
3.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
4.Research advances in the disease burden of viral hepatitis in China
Jian LI ; Fuzhen WANG ; Zhongdan CHEN ; Jinlei QI ; Ailing WANG ; Fanghui ZHAO ; Yuanyuan KONG ; Jing SUN ; Jiaqi KANG ; Zundong YIN ; Zhongfu LIU ; Jidong JIA ; Yu WANG
Journal of Clinical Hepatology 2025;41(2):221-227
Over the past three decades, China has made significant progress in the prevention and control of viral hepatitis, and the incidence rates of new-onset pediatric hepatitis B virus infections and acute viral hepatitis in the population have reduced to a relatively low level; however, there is still a heavy disease burden of chronic viral hepatitis in China, which severely affects the health status of the population. This study systematically summarizes the achievements of viral hepatitis prevention and control in China, analyzes existing problems and challenges, and proposes comprehensive prevention and control strategies and measures to eliminate viral hepatitis as a public health threat based on the national conditions of China, in order to provide a reference for related departments in China on how to achieve the action targets for eliminating viral hepatitis as a public health threat by 2030.
5.Analysis and evaluation of platelet bank establishment strategy from the perspective of donor loss
Zheng LIU ; Yamin SUN ; Xin PENG ; Yiqing KANG ; Ziqing WANG ; Jintong ZHU ; Juan DU ; Jianbin LI
Chinese Journal of Blood Transfusion 2025;38(2):238-243
[Objective] To analyze the loss rate of platelet donors and evaluate the strategies for establishing a platelet donor bank. [Methods] A total of 1 443 donors who joined the HLA and HPA gene donor bank for platelets in Henan Province from 2018 to 2020 were included in this study. Data on the total number of apheresis platelet donations, annual donation frequency, age at enrollment, donation habits (including the number of platelets donated per session and whether they had previously donated whole blood), and enrollment location were collected from the platelet donor information management system. Donor loss was determined based on the date of their last donation. The loss rates of different groups under various conditions were compared to assess the enrollment strategies. [Results] By the time the platelet bank was officially operational in 2022, 421 donors had been lost, resulting in an loss rate of 29% (421/1 443). By the end of 2023, the overall cumulative loss rate reached 52% (746/1 443). The loss rate was lower than the overall level in groups meeting any of the following conditions: total apheresis platelet donations exceeding 50, annual donation frequency of 10 or more, age at enrollment of 40 years or older, donation of more than a single therapeutic dose per session, or a history of whole blood donation two or more times. Additionally, loss rates varied across different enrollment locations, with higher enrollment numbers generally associated with higher loss rates. [Conclusion] Through a comprehensive analysis of donor loss, our center has adjusted its strategies for establishing the donor pool. These findings also provide valuable insights for other blood collection and supply institutions in building platelet donor banks.
6.Bioinformatics Reveals Mechanism of Xiezhuo Jiedu Precription in Treatment of Ulcerative Colitis by Regulating Autophagy
Xin KANG ; Chaodi SUN ; Jianping LIU ; Jie REN ; Mingmin DU ; Yuan ZHAO ; Xiaomeng LANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):166-173
ObjectiveTo explore the potential mechanism of Xiezhuo Jiedu prescription in regulating autophagy in the treatment of ulcerative colitis (UC) by bioinformatics and animal experiments. MethodsThe differentially expressed genes (DEGs) in the colonic mucosal tissue of UC patients was obtained from the Gene Expression Omnibus (GEO), and those overlapped with autophagy genes were obtained as the differentially expressed autophagy-related genes (DEARGs). DEARGs were imported into Metascape and STRING, respectively, for gene ontology/Kyoto Encyclopedia of Genes and Genomics (GO/KEGG) enrichment analysis and protein-protein interaction (PPI) analysis. Finally, 15 key DEARGs were obtained. The core DEARGs were obtained by least absolute shrinkage and selection operator (LASSO) regression and receiver operating characteristic curve (ROC) analysis. The CIBERSORT deconvolution algorithm was used to analyze the immunoinfiltration of UC patients and the correlations between core DEARGs and immune cells. C57BL/6J mice were assigned into a normal group and a modeling group. The mouse model of UC was established by free drinking of 2.5% dextran sulfate sodium. The modeled mice were assigned into low-, medium-, and high-dose Xiezhuo Jiedu prescription and mesalazine groups according to the random number table method and administrated with corresponding agents by gavage for 7 days. The colonic mucosal morphology was observed by hematoxylin-eosin staining. The protein and mRNA levels of cysteinyl aspartate-specific proteinase 1 (Caspase-1), cathepsin B (CTSB), C-C motif chemokine-2 (CCL2), CXC motif receptor 4 (CXCR4), and hypoxia-inducing factor-1α (HIF-1α) in the colon tissue were determined by Western blot and real-time fluorescence quantitative polymerase chain reaction, respectively. ResultsThe dataset GSE87466 was screened from GEO and interlaced with autophagy genes. After PPI analysis, LASSO regression, and ROC analysis, the core DEARGs (Caspase-1, CCL2, CTSB, and CXCR4) were obtained. The results of immunoinfiltration analysis showed that the counts of NK cells, M0 macrophages, M1 macrophages, and dendritic cells in the colonic mucosal tissue of UC patients had significant differences, and core DEARGs had significant correlations with these immune cells. This result, combined with the prediction results of network pharmacology, suggested that the HIF-1α signaling pathway may play a key role in the regulation of UC by Xiezhuo Jiedu prescription. The animal experiments showed that Xiezhuo Jiedu prescription significantly alleviated colonic mucosal inflammation in UC mice. Compared with the normal group, the model group showed up-regulated protein and mRNA levels of caspase-1, CCL2, CTSB, CXCR4, and HIF-1α, which were down-regulated after treatment with Xiezhuo Jiedu prescription or mesalazine. ConclusionCaspase-1, CCL2, CTSB, and CXCR4 are autophagy genes that are closely related to the onset of UC. Xiezhuo Jiedu prescription can down-regulate the expression of core autophagy genes to alleviate the inflammation in the colonic mucosa of mice.
7.Differences and Mechanisms of Combined Use of "Raw and Fried Ziziphi Spinosae Semen" in Anmeidan and Its Disassembled Prescriptions in Improving Anxiety and Cognitive Impairment in Insomnia Rat Model Based on Serum Metabolomics
Kang SUN ; Bo XU ; Zijing YE ; Miao ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):36-43
ObjectiveTo investigate the differences in efficacy and endogenous metabolic mechanisms of Anmeidan with combined use of raw and fried Ziziphi Spinosae Semen and its disassembled prescriptions in treating anxiety and cognitive impairment in insomnia rats. MethodsSixty rats were randomly divided into six groups (n=10 per group): blank group, model group, suvorexant group (30 mg·kg-1), Anmeidan group (9.09 g·kg-1), Anmeidan with absence of raw Ziziphi Spinosae Semen group (7.38 g·kg-1), and Anmeidan with absence of fried Ziziphi Spinosae Semen group (7.38 g·kg-1). An insomnia model was constructed by intraperitoneal injection of para-chlorophenylalanine (PCPA), followed by gavage administration of Anmeidan or its disassembled prescriptions. Anxiety levels were assessed using the open field test, while cognitive ability was evaluated via the novel object recognition test. The pathological morphology of hippocampal neurons was examined using electron microscopy. Serum samples were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) for principal component analysis, metabolic profiling, identification of differential metabolites, and metabolic pathway analysis. ResultsCompared with the blank group, the model group exhibited significantly increased exercise mileage, exercise time, and the ratio of the number of entries into the peripheral zone to the total number of entries into both the peripheral and central zones exhibited a marked increase (P<0.05, P<0.01), while the novel object recognition index significantly decreased (P<0.05). Compared with the model group, the Anmeidan and suvorexant groups showed significantly reduced exercise mileage and exercise time (P<0.01). The ratio of the number of entries into the peripheral zone to the total number of entries into both the peripheral and central zones decreased (P<0.05), and a significant increase in the novel object recognition index (P<0.01). However, the disassembled prescription groups showed no significant improvement in open field test and novel object recognition test indices. Electron microscopy revealed that the Anmeidan group improved the pathological morphology of hippocampal neurons in insomnia rats. Metabolomics analysis identified 10 potential differential metabolites associated with Anmeidan's therapeutic effects, involving metabolic pathways related to phenylalanine and tryptophan biosynthesis and metabolism, as well as the serotonergic pathway. ConclusionThe combined use of raw and fried Ziziphi Spinosae Semen in Anmeidan is more effective than its disassembled prescriptions in alleviating anxiety and cognitive impairment in PCPA-induced insomnia rats. The underlying mechanism may be associated with metabolic pathways related to phenylalanine, tryptophan, and serotonin.
8.Theoretical Exploration of Same "Etiology-Mechanism-Syndrome-Treatment-Prevention" in Insomnia and Skin Aging
Bo XU ; Miao ZHU ; Kang SUN ; Yuan PENG ; Ping WANG ; Li YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):72-78
Sleep, skin, and health are closely interconnected. Clinically, insomnia has a high incidence and is often accompanied by or secondary to skin aging. The two conditions exhibit "different diseases with the same syndrome", significantly affecting the physical and mental health of the Chinese population. Preventing and treating skin aging by improving insomnia is an important strategy, with the principle of "treating different diseases with the same approach" serving as a crucial therapeutic guideline. However, effective clinical prevention and treatment methods for both conditions remain lacking. Traditional Chinese medicine (TCM) has a profound theoretical foundation and notable efficacy in the concurrent treatment of insomnia and skin aging, yet there are few reports on the etiology, pathogenesis, therapeutic principles, and treatment methods of their shared treatment, warranting further exploration. Based on holistic view and syndrome differentiation and treatment in TCM, this study systematically investigates the theoretical origins of the shared manifestations of insomnia and skin aging from multiple dimensions, including etiology, pathological location, pathogenesis, disease nature, and prevention and treatment strategies. As early as Huangdi's Internal Classic (Huangdi Neijing), it was recognized that mental clarity during the day, sound sleep at night, and firm, healthy skin are key indicators of external health, whereas daytime lethargy, poor sleep quality, and dry, withered skin are prominent signs of aging. Maintaining mental clarity during the day and restful sleep at night is essential for skin integrity and healthy aging. Later medical scholars proposed that the common etiology of insomnia and skin aging lies in "internal-external interactions", with the pathological location involving "the five organ systems". The primary pathogenesis includes "deficiency, fire, stagnation, phlegm, and blood stasis", while the disease nature is often characterized by "a combination of deficiency and excess". Treatment should be guided by syndrome differentiation, following the principle of balancing Yin and Yang. This theoretical exploration enriches and advances TCM understanding of disease onset and prevention, providing theoretical guidance for the clinical prevention and treatment of insomnia-associated skin aging and contributing to the realization of the "Healthy China" initiative.
9.Measuring Medical Waste from Gastrointestinal Endoscopies in South Korea to Estimate Their Carbon Footprint
Da Hyun JUNG ; Hyun Jung LEE ; Tae Joo JEON ; Young Sin CHO ; Bo Ra KANG ; Nae Sun YOUN ; Jae Myung CHA
Gut and Liver 2025;19(1):43-49
Background/Aims:
Although gastrointestinal endoscopy (GIE) is a major contributor to the carbon footprint of national healthcare, the amount of medical waste generated by GIE procedures is not reported in South Korea. This study aimed to measure the amount of medical waste generated from GIE procedures in South Korea.
Methods:
We conducted a 5-day audit of medical waste generated during GIEs at seven hospitals. During the study period, medical waste in the endoscopy examination rooms was measured twice daily and documented as mass (kg). To calculate the mean mass of disposable waste generated during one esophagogastroduodenoscopy (EGD) and one colonoscopy, the mean mass of medical waste generated from seven examinations was calculated. The mean mass of medical waste generated during GIEs was calculated by dividing the total mass of medical waste generated by the number of GIE procedures.
Results:
Overall, 3,922 endoscopies were performed and 4,558 kg of waste was generated. The mean weight of medical waste generated per endoscopy was 1.34 kg. Each EGD and colonoscopy generated a mean of 0.24 kg and 0.43 kg of disposable waste, respectively. Applying the mean waste estimates from this study to annual GIE procedures performed in South Korea in 2022 showed that the total medical waste produced from GIE was 13,704,453 kg. In addition, the total masses of medical waste produced during EGD and colonoscopy procedures were 819,766 kg and 2,889,478 kg, respectively.
Conclusions
Our quantitative measurement showed that a large amount of medical waste is generated from GIE procedures. However, further research is warranted to reduce medical waste generated during GIE, which is an urgent unmet need.
10.Primed Mesenchymal Stem Cells by IFN-γγ and IL-1β Ameliorate Acute Respiratory Distress Syndrome through Enhancing Homing Effect and Immunomodulation
Taeho KONG ; Su Kyoung SEO ; Yong-Seok HAN ; Woo Min SEO ; Bokyong KIM ; Jieun KIM ; Young-Jae CHO ; Seunghee LEE ; Kyung-Sun KANG
Biomolecules & Therapeutics 2025;33(2):311-324
Acute Respiratory Distress Syndrome (ARDS) is a severe condition characterized by extensive lung inflammation and increased alveolar-capillary permeability, often triggered by infections or systemic inflammatory responses. Mesenchymal stem cells (MSCs)-based therapy holds promise for treating ARDS, as MSCs manifest immunomodulatory and regenerative properties that mitigate inflammation and enhance tissue repair. Primed MSCs, modified to augment specific functionalities, demonstrate superior therapeutic efficacy in targeted therapies compared to naive MSCs. This study explored the immunomodulatory potential of MSCs using mixed lymphocyte reaction (MLR) assays and co-culture experiments with M1/M2 macrophages. Additionally, RNA sequencing was employed to identify alterations in immune and inflammation-related factors in primed MSCs. The therapeutic effects of primed MSCs were assessed in an LPS-induced ARDS mouse model, and the underlying mechanisms were investigated through spatial transcriptomics analysis. The study revealed that MSCs primed with IFN-γ and IL-1β significantly enhanced the suppression of T cell activity compared to naive MSCs, concurrently inhibiting TNF-α while increasing IL-10 production in macrophages. Notably, combined treatment with these two cytokines resulted in a significant upregulation of immune and inflammation-regulating factors. Furthermore, our analyses elucidated the mechanisms behind the therapeutic effects of primed MSCs, including the inhibition of inflammatory cell infiltration in lung tissue, modulation of immune and inflammatory responses, and enhancement of elastin fiber formation. Signaling pathway analysis confirmed that efficacy could be enhanced by modulating NFκB and TNF-α signaling. In conclusion, in early-phase ARDS, primed MSCs displayed enhanced homing capabilities, improved lung function, and reduced inflammation.

Result Analysis
Print
Save
E-mail